Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a simple method for the analysis of large networks based on their graph spectral properties. One of the advantages of this method is that it uses a single numerical computation to identify subclusters in a connected graph, which can significantly simplify the complexity involved in analyzing large graphs. This is illustrated using a network of protein chains constructed on the basis of their structural similarities. The large-scale network properties and the cluster and subcluster organization of the protein chain network are presented. We summarize the results of structural and functional analyses of the nodes present in these clusters and elucidate the implications of structural similarity in the protein chain universe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.20532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!