Loss-of-function mutations of the MECP2 gene at Xq28 are associated with Rett syndrome in females and with syndromic and nonsyndromic forms of mental retardation (MR) in males. By array comparative genomic hybridization (array-CGH), we identified a small duplication at Xq28 in a large family with a severe form of MR associated with progressive spasticity. Screening by real-time quantitation of 17 additional patients with MR who have similar phenotypes revealed three more duplications. The duplications in the four patients vary in size from 0.4 to 0.8 Mb and harbor several genes, which, for each duplication, include the MR-related L1CAM and MECP2 genes. The proximal breakpoints are located within a 250-kb region centromeric of L1CAM, whereas the distal breakpoints are located in a 300-kb interval telomeric of MECP2. The precise size and location of each duplication is different in the four patients. The duplications segregate with the disease in the families, and asymptomatic carrier females show complete skewing of X inactivation. Comparison of the clinical features in these patients and in a previously reported patient enables refinement of the genotype-phenotype correlation and strongly suggests that increased dosage of MECP2 results in the MR phenotype. Our findings demonstrate that, in humans, not only impaired or abolished gene function but also increased MeCP2 dosage causes a distinct phenotype. Moreover, duplication of the MECP2 region occurs frequently in male patients with a severe form of MR, which justifies quantitative screening of MECP2 in this group of patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1226209PMC
http://dx.doi.org/10.1086/444549DOI Listing

Publication Analysis

Top Keywords

duplication mecp2
8
mecp2 region
8
mental retardation
8
severe form
8
breakpoints located
8
mecp2
7
patients
6
duplication
5
region frequent
4
frequent severe
4

Similar Publications

Comprehensive assessment reveals numerous clinical and neurophysiological differences between MECP2-allelic disorders.

Ann Clin Transl Neurol

January 2025

Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.

Objective: Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved.

View Article and Find Full Text PDF

: duplication syndrome (MDS) (MIM#300260) is a rare X-linked neurodevelopmental disorder. This study aims to (1) develop a specific clinical severity scale, (2) explore its correlation with clinical and molecular variables, and (3) automate diagnosis using the Face2gene platform. : A retrospective study was conducted on genetically confirmed MDS patients who were evaluated at a pediatric hospital between 2012 and 2024.

View Article and Find Full Text PDF

Introduction: The clinical, research and advocacy communities for Rett syndrome are striving to achieve clinical trial readiness, including having fit-for-purpose clinical outcome assessments. This study aimed to (1) describe psychometric properties of clinical outcome assessment for Rett syndrome and (2) identify what is needed to ensure that fit-for-purpose clinical outcome assessments are available for clinical trials.

Methods: Clinical outcome assessments for the top 10 priority domains identified in the Voice of the Patient Report for Rett syndrome were compiled and available psychometric data were extracted.

View Article and Find Full Text PDF

Background: MECP2 Duplication Syndrome, also known as X-linked intellectual developmental disorder Lubs type (MRXSL; MIM: 300260), is a neurodevelopmental disorder caused by copy number gains spanning MECP2. Despite varying genomic rearrangement structures, including duplications and triplications, and a wide range of duplication sizes, no clear correlation exists between DNA rearrangement and clinical features. We had previously demonstrated that up to 38% of MRXSL families are characterized by complex genomic rearrangements (CGRs) of intermediate complexity (2 ≤ copy number variant breakpoints < 5), yet the impact of these genomic structures on regulation of gene expression and phenotypic manifestations have not been investigated.

View Article and Find Full Text PDF

Duplication of methyl-CpG-binding protein 2 (MECP2) gene causes MECP2 duplication syndrome (MDS). To normalize the duplicated MECP2 in MDS, we developed a high-fidelity Cas13Y (hfCas13Y) system capable of targeting the MECP2 (hfCas13Y-gMECP2) messenger RNA for degradation and reducing protein levels in the brain of humanized MECP2 transgenic mice. Moreover, the intracerebroventricular adeno-associated virus (AAV) delivery of hfCas13Y-gMECP2 in newborn or adult MDS mice restored dysregulated gene expression and improved behavior deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!