Pluto voyage: a man with a mission.

Nature

Published: August 2005

Download full-text PDF

Source
http://dx.doi.org/10.1038/436618aDOI Listing

Publication Analysis

Top Keywords

pluto voyage
4
voyage man
4
man mission
4
pluto
1
man
1
mission
1

Similar Publications

Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind.

View Article and Find Full Text PDF

Newly processed global imaging and topographic mapping of Uranus's five major satellites reveal differences and similarities to mid-sized satellites at Saturn and Pluto. Three modes of internal heat redistribution are recognized. The broad similarity of Miranda's three oval resurfacing zones to those mapped on Enceladus and (subtly) on Dione are likely due to antipodal diapiric upwelling.

View Article and Find Full Text PDF

Infrared spectroscopy of organics of planetological interest at low temperatures.

Adv Space Res

December 2000

Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, USA.

In the context of prebiotic chemistry in space, some of the outer planetary objects display H, C, N and O rich chemistry similar to the one in the biosphere of Earth. Of particular interest are Saturn's moon, Titan; Neptune's moon, Triton; and Pluto where extreme cold conditions prevail. Identifications of chemical species on these objects (surfaces and atmospheres) is essential to a better understanding of the radiation induced chemical reactions occurring thereon.

View Article and Find Full Text PDF

The atmospheres of bodies in the outer solar system are distinct in composition from those of the inner planets and provide a complementary set of clues to the origin of the solar system. This article reviews current understanding of the origin and evolution of these atmospheres on the basis of abundances of key molecular species. The systematic enrichment of methane and deuterated species from Jupiter to Neptune is consistent with formation models in which significant infall of icy and rocky planetesimals accompanies the formation of giant planets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!