Human zona pellucida (ZP) is maintained up to the blastocyst stage prior to hatching. In in vitro fertilized (IVF) embryos, it eventually acts as a morphodynamic interface between the cultured embryo and its microenvironment. Ultrastructural data on the ZP of IVF blastocysts are scarce in humans. We employed correlated phase contrast microscopy (PCM) and scanning electron microscopy (SEM) to study retrospectively the ultrastructural morphology of the ZP outer surface of 20 IVF human blastocysts from 16 Japanese patients (28-44 years of age, average 36.7+/-4.2) with a history of infertility. Blastocysts were derived from conventional in vitro fertilization (cIVF) (n = 10) and from intracytoplasmic sperm injection (ICSI) (n = 10). Both cIVF and ICSI groups included "clear blastocysts" (n = 5) and "dark blastocysts" (n = 5). By PCM, the clear blastocysts exhibited a regular, round-shaped contour and consisted of clear and voluminous cells. By SEM, they displayed a spongy ZP with numerous fenestrations formed by networked filaments. By PCM, dark blastocysts appeared irregularly shaped and often collapsed, and comprised dark cells and debris. By SEM, their ZP were smooth with remnants of compact fenestrations. In conclusion, viable blastocysts presented a normal ZP outer surface ultrastructure, whereas unhealthy blastocysts showed an altered ZP outer surface, comparable to that of immature/atretic oocytes. Such alterations could reflect sub-optimal culture conditions and/or could be related to blastocyst degenerative processes. The blastocyst ZP surface ultrastructure was unaffected by the fertilization technique (cIVF or ICSI). These data suggest that blastocyst survival in vitro is related to ZP ultrastructure maintenance.

Download full-text PDF

Source
http://dx.doi.org/10.1679/aohc.68.133DOI Listing

Publication Analysis

Top Keywords

outer surface
12
zona pellucida
8
blastocysts
8
human blastocysts
8
vitro fertilization
8
civf icsi
8
surface ultrastructure
8
surface
5
surface morphology
4
morphology zona
4

Similar Publications

Carbapenem resistant Acinetobacter baumannii has evolved as the most troublesome microorganism with multiple virulence factors. Biofilm formation, porins, micronutrient capturing mechanism and quorum sensing, provide protection against desiccation, host-pathogen killing and enhance its persistence. The conservation of these factors between colonizing and pathogenic carbapenem resistant A.

View Article and Find Full Text PDF

Plastid-localized plastoglobules (PGs) are monolayer lipid droplets typically associated with the outer envelope of thylakoid membranes in chloroplasts. The size and number of PGs can vary significantly in response to different environmental stimuli. Since the early 21st century, a variety of proteins attached to the surface of PGs have been identified and experimentally characterized using advanced biotechnological techniques, revealing their biological functions.

View Article and Find Full Text PDF

Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.

View Article and Find Full Text PDF

Study on Long-Term Temperature Variation Characteristics of Concrete Bridge Tower Cracks Based on Deep Learning.

Sensors (Basel)

January 2025

Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.

Monitoring existing cracks is a critical component of structural health monitoring in bridges, as temperature fluctuations significantly influence crack development. The study of the Huai'an Bridge indicated that concrete cracks predominantly occur near the central tower, primarily due to temperature variations between the inner and outer surfaces. This research aims to develop a deep learning model utilizing Long Short-Term Memory (LSTM) neural networks to predict crack depth based on the thermal variations experienced by the main tower.

View Article and Find Full Text PDF

A multilayer structure is a type of construction consisting of outer layers and a core, which is mainly characterized by high strength and specific stiffness, as well as the ability to dampen vibration and sound. This structure combines the high strength of traditional materials (mainly metals) and composites. Currently, sandwich structures in any configurations (types of core) are one of the main directions of technology development and research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!