Fragile X syndrome, the most frequent form of hereditary mental retardation, is due to a mutation of the fragile X mental retardation 1 (FMR1) gene on the X chromosome. Like fragile X patients, FMR1-knockout (FMR1-KO) mice lack the normal fragile X mental retardation protein (FMRP) and show both cognitive alterations and an immature neuronal morphology. We reared FMR1-KO mice in a C57BL/6 background in enriched environmental conditions to examine the possibility that experience-dependent stimulation alleviates their behavioral and neuronal abnormalities. FMR1-KO mice kept in standard cages were hyperactive, displayed an altered pattern of open field exploration, and did not show habituation. Quantitative morphological analyses revealed a reduction in basal dendrite length and branching together with more immature-appearing spines along apical dendrites of layer five pyramidal neurons in the visual cortex. Enrichment largely rescued these behavioral and neuronal abnormalities while increasing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit 1 (GluR1) levels in both genotypes. Enrichment did not, however, affect FMRP levels in the WT mice. These data suggest that FMRP-independent pathways activating glutamatergic signaling are preserved in FMR1-KO mice and that they can be elicited by environmental stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1183589 | PMC |
http://dx.doi.org/10.1073/pnas.0504984102 | DOI Listing |
JCI Insight
December 2024
Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and.
The opioid system plays crucial roles in modulating social behaviors in both humans and animals. However, the pharmacological profiles of opioids regarding social behavior and their therapeutic potential remain unclear. Multiple pharmacological, behavioral, and immunohistological c-Fos mapping approaches were used to characterize the effects of μ-opioid receptor agonists on social behavior and investigate the mechanisms in naive mice and autism spectrum disorder-like (ASD-like) mouse models, such as prenatally valproic acid-treated mice and Fmr1-KO mice.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Neuroscience, Albert Einstein College of Medicine; New York, NY, U.S.A.
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and often accompanied with debilitating pathologies including seizures and hyperactivity. FXS arises from a trinucleotide repeat expansion in the 5' UTR of the gene that silences expression of the RNA-binding protein FMRP. Despite progress in understanding FMRP functions, the identification of effective therapeutic targets has lagged and at present there are no viable treatment options.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000, Bordeaux, France. Electronic address:
Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!