Involvement of NF-kappaB and glutathione in cytotoxic effects of nitric oxide and taxol on human leukemia cells.

Leuk Res

Department of Clinical Analysis, Center of Health Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88049-900, Brazil.

Published: February 2006

Nitric oxide (NO) has been shown to be cytotoxic for normal and transformed cell lines. One of the intracellular targets for NO action is glutathione (GSH). GSH determinates cellular redox potential and modulates several biological events. During oxidative and nitrosative stress, glutathione system imbalance is associated with the upregulation of gamma-glutamylcysteine synthetase (gamma-GCS) expression, which is mediated by nuclear factor kappaB (NF-kappaB). Our previous studies demonstrated a cytotoxic effect of NO and taxol on human lymphoblastic leukemia cells triggered by inhibition of NF-kappaB activity. In this study, we have demonstrated the involvement of GSH in taxol- and NO-induced cytotoxic effects on human CEM leukemia cells. NO- and taxol-induced a depletion of GSH levels in CEM cells, which was potentialized by l-buthionine-S,R-sulfoximine (BSO), an inhibitor of gamma-GCS. BSO induced an increase in nuclear translocation of NF-kappaB. However, when cells were treated with NO or taxol in association with BSO, these compounds inhibited the constitutive activity of NF-kappaB. These results suggest that oxidative and nitrosative damage in lymphoblastic leukemia cells shall be mediated by NO- and taxol-induced GSH depletion as a consequence of preventing GSH synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2005.06.021DOI Listing

Publication Analysis

Top Keywords

leukemia cells
16
cytotoxic effects
8
nitric oxide
8
taxol human
8
oxidative nitrosative
8
lymphoblastic leukemia
8
no- taxol-induced
8
cells
6
gsh
6
involvement nf-kappab
4

Similar Publications

Discovery of a potent PROTAC degrader for RNA demethylase FTO as antileukemic therapy.

Acta Pharm Sin B

December 2024

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.

View Article and Find Full Text PDF

VEXAS syndrome is a haemato-inflammatory disease caused by somatic UBA1 mutations and characterized by cytoplasmic vacuoles in myeloid and erythroid precursor cells. Although there is currently no standard treatment algorithm for VEXAS, patients are generally treated with anti-inflammatory therapies focused on symptom management, with only partial effectiveness. Hypomethylating agents (HMA) have shown promise in VEXAS patients with concomitant myelodysplastic syndrome (MDS), while the efficacy of HMA in VEXAS patients without MDS is largely unknown.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is an aggressive hematological neoplasm. Little improvement in survival rates has been achieved over the past few decades. Necroptosis has relationship with certain types of malignancies outcomes.

View Article and Find Full Text PDF

The FLT3 gene frequently undergoes mutations in acute myeloid leukemia (AML), with internal tandem duplications (ITD) and tyrosine kinase domain (TKD) point mutations (PMs) being most common. Recently, PMs and deletions in the FLT3 juxtamembrane domain (JMD) have been identified, but their biological and clinical significance remains poorly understood. We analyzed 1660 patients with de novo AML and found FLT3-JMD mutations, mostly PMs, in 2% of the patients.

View Article and Find Full Text PDF

The expression of CD38 by cancer cells may mediate an immune-suppressive effect by producing Extracellular Adenosine (ADO) acting through G-protein-coupled cell surface receptors on cellular components and tumor cells. This can increase PD-1 expression and interaction with PD-L1, suppressing CD8 + cytotoxic T cells. This study examines the impact of heightened CD38 expression and extracellular ADO on various hematological and clinical parameters in patients with mature B-cell lymphoma, alongside their correlation with the soluble counterparts of the PD-1/PD-L1 axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!