A new compound with electride characteristics, Li@calix[4]pyrrole, is designed in theory. The Li atom in Li@calix[4]pyrrole is ionized to form a cation and an excess electron anion. Its structure with C(4v) symmetry resembles a cup-like shape. It may be a stable organic electride at room temperature. The first hyperpolarizability of the cup-like electride molecule is first investigated by the DFT (B3LYP) method. The result shows that this electride molecule has a considerably large first hyperpolarizability with beta(0) = 7326 au (63.3 x 10(-30) esu), while the beta(0) value of the related calix[4]pyrrole system is only 390 au. Obviously, the Li atom doped in calix[4]pyrrole brings a dramatic change to the electronic structure, so that the first hyperpolarizability of Li@calix[4]pyrrole is almost 20 times larger than that of calix[4]pyrrole. We find that the excess electron from the Li atom plays an important role in the large first hyperpolarizability of Li@calix[4]pyrrole. The present investigation reveals a new idea and different means for designing and synthesizing high-performance NLO materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja050601w | DOI Listing |
Nanomaterials (Basel)
February 2025
Zhongyuan Critical Metal Laboratory, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
The excessive utilization and emission of waste plastics have caused serious damage to the environment, and it is of great significance to explore high-value utilization methods for these waste plastics. To address this challenge, functional nano cobalt-loaded porous carbon materials (CoPC) with excellent antibiotic wastewater removal properties were prepared by one-step pyrolysis using waste PET plastics as a carbon source, a process described in this paper. Characterization revealed that the obtained CoPC-2 catalysts had a high degree of defects, a large specific surface area (343.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222005, China.
In this study, a CeO/attapulgite (ATP) composite was synthesized via a straightforward hydrothermal method to efficiently remove excess fluoride from water. The structural and surface properties of the synthesized adsorbent were systematically characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The fluoride adsorption capacity of the CeO/ATP composite was systematically evaluated, reaching a maximum of 47.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Tata Institute of Fundamental Research, Chemical Sciences, Homi Bhabha Road, 400005, Mumbai, INDIA.
We characterize the attachment of excess-electrons to organic nanoporous systems such as molecular nanohoops and models of covalent organic frameworks (COFs) using many-body methods. All the nanopore systems exhibit diffuse electronic states where the excess-electron is bound to the molecular scaffold via long-range polarization forces, and the excess-electron is predominantly localized in the interior of the nanopore or away from the molecular scaffold. Such ``nanopore-bound'' states show an enhanced electron-transfer coupling compared to more strongly-bound skeletal-states (or valence-bound states), where the excess-electron is confined to the molecular skeleton.
View Article and Find Full Text PDFEnviron Technol
March 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, People's Republic of China.
Vegetated concrete has proven to be an effective technique for restoring the ecological environment of rocky slopes, but conventional formulations often suffer from excessive cement content and limited plant growth. This study proposes the use of biochar (BC) and limestone calcined clay cement (LC3) to form an improved vegetated concrete mix. Twenty-five different formulations were tested for their compressive and shear strength, pH values, and Bermuda grass growth.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea. Electronic address:
The shift towards sustainable alternatives to petroleum-based polymers has become essential for addressing environmental challenges. Among these alternatives, bio-plastics such as poly(3-hydroxybutyrate) (PHB) have gained considerable attention due to their biodegradability into water and carbon dioxide through microbial activity. PHB is one of the most widely commercialized bio-plastics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!