There is significant interest in the direct antioxidant activities of dietary polyphenols, due to associations between consumption of polyphenol-rich foods, such as fruits and vegetables, and decreased incidence of oxidative-stress related disease. However, indirect antioxidant action, such as the inhibition of ROS-producing enzymes, may be equally relevant to health benefits through a general reduction in oxidative stress in vivo. To this end, the effects of food extracts and individual compounds on the in vitro activity of xanthine oxidase (XO) were assessed, many for the first time. Several compounds were shown to be potent inhibitors in vitro, including hesperetin and theaflavin-3,3'-digallate with IC50 values of 39 and 49 microM, respectively. Of the extracts, cranberry juice, purple grape juice, and black tea were the most potent, with IC50 values of 2.4, 3.5, and 5.8% of extracts, respectively. Some samples were shown to promote XO activity over the concentration ranges tested, including orange juice and pink grapefruit juice. Certain "inhibitors", such as purple grape juice and black tea, promoted XO activity at low concentration. The possible role of dietary inhibitors of XO in reducing oxidative stress in vivo is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf050716j | DOI Listing |
Org Lett
January 2025
School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
In this work, coixalkyne A (), a natural polynuclear calcium complex with a novel cross-shaped molecular architecture, was isolated from L. along with the undescribed analogue coixalkyne B (). Their structures were identified by means of NMR spectroscopy, ECD calculations, and single-crystal X-ray diffraction.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland.
Polyphenolic plant compounds possess nutritional and pro-healthy potential, reducing the risk of auto-inflammatory and neoplastic diseases. However, their interference with the progression of thyroid gland dysfunctions has remained largely unaddressed. For this purpose, we combined the analyses of phenolic content and antioxidative activity with the thyroid peroxidase (TPO), lipoxygenase (LOX), xanthine oxidase (XO) and cyclooxygenase-2 (COX-2) activity assays, isobolographic approach and the estimation of thyroid cancer cells' proliferation and motility in vitro.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India. Electronic address:
In this study, five seagrass species Halodule uninervis, Thalassia hemprichii, Enhalus acoroides, Cymodocea serrulata, and Syringodium isoetifolium collected from the Mandapam coastal region of Rameswaram (Palk Bay region), Tamil Nadu, India, were selected to identify the antioxidant-rich proteins/peptides. The primary objective was to identify the proteins/peptides present in these seagrass filtrates extracted by using four different pH-based buffer extracts and to assess their antioxidant activity. Among the various buffer extracts, 0.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China.
Purpose: Serum uric acid (SUA) is primarily produced through the hydrolysis of purines in the liver, with its excretion largely handled by the kidneys. Urate transporter 1 (URAT1) inhibitors are known to enhance uric acid elimination via the kidneys, but they also increase the risk of kidney stone formation. Currently, xanthine oxidase (XO) inhibitors are the predominant uric-lowering medications on the market.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China. Electronic address:
Biomimetic membrane was investigated as model systems to mimic the structure of milk fat globule membrane (MFGM) and to study the effects of thermal processing-induced changes in MFGM fractions on membrane morphology and physical properties. Molecular docking was utilized to screen xanthine oxidase (XO) as the MFGM protein most likely to bind to phospholipid molecules on MFGM. Fluorescence spectroscopy verified that XO formed stable complexes with DOPE, DPPC, and PS 18:0-18:1, with the strongest binding to DOPE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!