Standardized, high-throughput RNA detection with microarray chips allows for the construction of genome-wide databases for tissue specimens suitable for in silico electronic Northern blot (eNorthern) analysis of marker genes. We used the BioExpress database, which contains transcriptional profiles of normal and cancer samples, to examine two putative markers of cancer stroma: fibroblast activation protein-alpha (FAP-alpha) and endosialin. Analyses for FAP-alpha showed that normal tissues generally lack RNA signals, with the exception of endometrium. Typing of tumors revealed prominent FAP-alpha signals in cancer types marked by desmoplasia, and localization of FAP-alpha in reactive cancer stroma was confirmed by immunohistochemistry. A subset of sarcomas displayed prominent FAP-alpha signals localizing to the malignant cells. For endosialin, eNorthern analyses showed low to moderate RNA signals in many normal organs, whereas immunohistochemistry revealed endosialin in only some tissues, such as endometrium. Endosialin was detected at the RNA and protein level in sarcomas, notably malignant fibrous histiocytomas. Low to moderate endosialin RNA signals were found in epithelial cancer types for which immunostaining identifies expression in subsets of tumor capillaries or fibroblasts. These findings extend the FAP-alpha and endosialin profiling in silico to an unbiased tumor database and place both molecules in a novel context of endometrial biology and sarcoma subtyping. Our findings suggest that BioExpress can be searched directly for tumor stroma markers but may need prior enrichment for markers with narrow cellular representation, such as endosialin. Constructing databases from microdissected cancer tissues may be an essential step for tumor stroma-targeted therapies.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cancer stroma
12
rna signals
12
stroma markers
8
fibroblast activation
8
endosialin
8
fap-alpha endosialin
8
prominent fap-alpha
8
fap-alpha signals
8
cancer types
8
low moderate
8

Similar Publications

The molar dose of FAPI administered impacts on the FAP-targeted PET imaging and therapy in mouse syngeneic tumor models.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.

Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.

View Article and Find Full Text PDF

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

Click hydrogels to assess stiffness-induced activation of pancreatic cancer-associated fibroblasts and its impact on cancer cell spreading.

Chembiochem

January 2025

Purdue University College of Engineering, Weldon School of Biomedical Engineering, 723 W. Michigan St., SL 220K, IN 46202, Indianapolis, UNITED STATES OF AMERICA.

Pancreatic ductal adenocarcinoma (PDAC) is marked by significant desmoplastic reactions, or the accumulation of excessive extracellular matrices. PDAC stroma has abnormally high stiffness, which alters cancer cell behaviors and creates a barrier for effective drug delivery. Unfortunately, clinical trials using a combination of chemotherapy and matrix-degrading enzyme have led to disappointing results, as the degradation of stromal tissue likely accelerated the dissemination of cancer cells.

View Article and Find Full Text PDF

Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.

View Article and Find Full Text PDF

Evaluation of Tumor-Infiltrating Leukocytes in Endolymphatic Sac Tumor.

Laryngoscope

January 2025

Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.

Objective: Endolymphatic sac tumors (ELSTs), as rare low-grade neoplasms, are primarily treated with surgery. This study analyzes the characteristics of tumor-infiltrating leukocytes (TILs) in ELSTs and their relationships with clinical features to explore the potential for immunotherapy in ELSTs.

Methods: Clinical data and tumor specimens of 10 ELSTs patients who underwent surgery were retrieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!