While several techniques exist for assessing quantitative differences among proteomes representing different cell states, methods for assessing how these differences are mediated are largely missing. We present a method that allows one to differentiate between cellular processes, such as protein synthesis, degradation and PTMs which affect protein concentrations. An induced systemic perturbation of a cell culture was coupled to a replacement of the growth medium to one highly enriched in the stable isotope 15N. The relative abundance of the 15N- and 14N-enriched forms of proteins, isolated from cell cultures harvested at time points following the onset of the perturbation, were determined by MS. Alterations in protein synthesis and degradation were quantified by comparing proteins isolated from perturbed and unperturbed cultures, respectively. The method was evaluated by subjecting HeLa cells to heat stress. As expected, a number of known heat shock proteins (Hsp) increased in concentration during heat stress. For Hsp27, increased de novo synthesis accounted for the concentration increase, while for Hsp70, decreased degradation accounted for the increase. A protein that was detected only after prolonged heat stress, vimentin, was not primarily synthesized de novo, but appeared rather as a result of PTM.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200401193DOI Listing

Publication Analysis

Top Keywords

heat stress
12
protein concentrations
8
protein synthesis
8
synthesis degradation
8
proteins isolated
8
protein
5
proteomic method
4
method analysis
4
analysis changes
4
changes protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!