Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Extracellular ATP is an important regulator of transepithelial transport in a number of tissues. In pancreatic ducts, we have shown that ATP modulates epithelial K+ channels via purinergic receptors, most likely the P2Y2 and P2Y4 receptors, but the identity of the involved K+ channels was not clear. In this study, we show by RT-PCR analysis that rat pancreatic ducts express Ca(2+)-activated K+ channels of intermediate conductance (IK) and big conductance (BK), but not small conductance (SK). Possible interactions between P2Y receptors and these Ca(2+)-activated K+ channels were examined in co-expression experiments in Xenopus laevis oocytes. K+ channel activity was measured electrophysiologically in oocytes stimulated with UTP (0.1 mM). UTP stimulation of oocytes expressing P2Y4 receptors and BK channels resulted in a 30% increase in the current through the expressed channels. In contrast, stimulation of P2Y2 receptors led to a 20% inhibition of co-expressed BK channel activity, a response that was sensitive to TEA. Furthermore, co-expression of IK channels with P2Y4 and P2Y2 receptors resulted in a large hyperpolarization and 22-fold and 5-fold activation of currents by UTP, respectively. Taken together, this study shows that there are different interactions between the subtypes of P2Y purinergic receptors and different Ca(2+)-activated K+ channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-005-1433-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!