Molecular characterization of proteolytic processing of the Gag proteins of human spumaretrovirus.

Methods Mol Biol

Department of Research and Development, Mikrogen GmbH, Martinsried, Germany.

Published: September 2005

Molecular characterization of proteolytic processing of the human spumaretrovirus (HSRV) Gag proteins and the precise determination of cleavage sites was performed. For in vitro processing of recombinant HSRV Gag proteins, a recombinant enzymatically active HSRV protease was employed. Recombinant Gag proteins and protease were cloned and expressed as hexa-histidine-tagged proteins in pET-32b and pET-22b vectors, respectively, in the E. coli BL21 expression strain. The recombinant proteins were purified by affinity chromatography on an immobilized metal ion matrix. To determine the precise processing sites, recombinant Gag proteins or synthetic peptides derived from Gag sequences were cleaved in vitro by the recombinant protease. Proteolytic processing reactions were carried out under optimal reaction conditions of HSRV protease in sodium phosphate buffer, pH 6.0, supplied with 2 M NaCl at 37 degrees C. The cleavage sites were determined by amino-terminal amino acid sequencing as well as by matrix-assisted laser desorption/ionization mass spectrometry analysis of the reaction products. Fluorescence spectrophotometry was used to determine cleavage kinetics of peptides mimicking different cleavage sites within the HSRV Gag proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-907-9:435DOI Listing

Publication Analysis

Top Keywords

gag proteins
24
proteolytic processing
12
hsrv gag
12
cleavage sites
12
molecular characterization
8
characterization proteolytic
8
proteins
8
human spumaretrovirus
8
hsrv protease
8
recombinant gag
8

Similar Publications

Bovine viral diarrhea virus (BVDV), a pestivirus in the family , is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections.

View Article and Find Full Text PDF

Enhancement of Human Immunodeficiency Virus-Specific CD8 T Cell Responses with TIGIT Blockade Involves Trogocytosis.

Pathogens

December 2024

Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.

Natural killer (NK) and CD8 T cell function is compromised in human immunodeficiency virus type 1 (HIV-1) infection by increased expression of inhibitory receptors such as TIGIT (T cell immunoreceptor with Ig and ITIM domains). Blocking inhibitory receptors or their ligands with monoclonal antibodies (mAb) has potential to improve antiviral immunity in general and facilitate HIV eradication strategies. We assessed the impact of TIGIT engagement and blockade on cytotoxicity, degranulation, and interferon-gamma (IFN-γ) production by CD8 T cells from persons living with HIV (PLWH).

View Article and Find Full Text PDF

Retrotransposon Gag-like 4 (), a gene acquired from a retrovirus, is a causative gene in autism spectrum disorder. Its knockout mice exhibit increased impulsivity, impaired short-term spatial memory, failure to adapt to novel environments, and delayed noradrenaline (NA) recovery in the frontal cortex. However, due to its very low expression in the brain, it remains unknown which brain cells express RTL4 and its dynamics in relation to NA.

View Article and Find Full Text PDF

HIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome.

View Article and Find Full Text PDF

Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells.

Appl Microbiol Biotechnol

January 2025

Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.

Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!