Halogen-substituted iminosulfuranes are transdermal penetration enhancers (TPEs) in permeation studies using hairless mouse or human cadaver skin. The interaction of N--(4--R-benzoyl)-S,S-dimethyliminosulfuranes 1--4, where R=H, Cl, Br, and I, with l-alpha-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) has been studied using differential scanning calorimetry, isothermal titration calorimetry, nuclear Overhauser effect spectroscopy (NOESY), and NMR spectroscopy, and by calculation of the iminosulfurane polarizabilities in order to elucidate the molecular basis of the TPE activity. The active compounds reduce the melting temperature of the gel-to-liquid-crystal phase transition and induce multiple components in the transition excess heat capacity profile. The partitioning of the bromo derivative 3, the most active compound, into DMPC is unique in that 3 may be trapped in the bilayer, affording an enhanced residence time and a reason for its high TPE activity. The entropy decrease associated with the transfer of 3 to the bilayer is much lower than that for the other compounds, indicating that 3 occupies or induces sites that afford it considerable local motional freedom. Correlations between the iminosulfurane TPE activities, the partition coefficients, and NOESY crosspeak volume were observed. Molecular polarizabilities are not consistent with a TPE mode of action involving interaction of these agents with protein side chains.

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.M500123-JLR200DOI Listing

Publication Analysis

Top Keywords

tpe activity
8
mechanistic studies
4
studies percutaneous
4
percutaneous penetration
4
penetration enhancement
4
enhancement n-4-halobenzoyl-ss-dimethyliminosulfuranes
4
n-4-halobenzoyl-ss-dimethyliminosulfuranes halogen-substituted
4
halogen-substituted iminosulfuranes
4
iminosulfuranes transdermal
4
transdermal penetration
4

Similar Publications

While autonomic dysregulation and repolarization abnormalities are observed in subarachnoid hemorrhage (SAH), their relationship remains unclear. We aimed to measure skin sympathetic nerve activity (SKNA), a novel method to estimate stellate ganglion nerve activity, and investigate its association with electrocardiogram (ECG) alterations after SAH. We recorded a total of 179 SKNA data from SAH patients at three distinct phases and compared them with 20 data from controls.

View Article and Find Full Text PDF

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh)

January 2025

Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.

View Article and Find Full Text PDF

The impact of obesity on heart rate variability (HRV) and ventricular repolarization, both vital indicators of cardiovascular health, is the focus of this review. Obesity, measured by BMI, waist circumference, and waist-to-hip ratio, significantly increases cardiovascular disease (CVD) risk due to structural and autonomic heart changes. Findings show that obese individuals exhibit prolonged QT and Tpeak-to-Tend (Tpe) intervals, suggesting delayed ventricular recovery and greater arrhythmia risk.

View Article and Find Full Text PDF

Recent advancements in nanoscience underscore the transformative potential of nanomaterials in environmental and biological applications. In this study, we synthesized gold nanoparticles (Au@ NPs) using an eco-friendly and cost-effective approach, leveraging peel extract as both a capping and reducing agent. This method presents a sustainable alternative to traditional chemical agents.

View Article and Find Full Text PDF

Immobilizing organic chromophores within the rigid framework of metal-organic frameworks (MOFs) augments fluorescence by effectively curtailing molecular motions. Yet, the substantial interspaces and free volumes inherent to MOFs can undermine photoluminescence efficiency, as they partially constrain intramolecular dynamics. In this study, we achieved optimization of both one- and two-photon excited fluorescence by incorporating linkers into an interpenetrated tetraphenylethene-based MOF (TPE-MOF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!