CD26 is an antigen with key role in T-cell biology and is expressed on selected subsets of aggressive T-cell malignancies. To elucidate the role of CD26 in tumor behavior, we examine the effect of CD26 depletion by small interfering RNA transfection of T-anaplastic large cell lymphoma Karpas 299. We show that the resultant CD26-depleted clones lose the ability to adhere to fibronectin and collagen I. Because anti-integrin beta1 blocking antibodies also prevent binding of Karpas 299 to fibronectin and collagen I, we then evaluate the CD26-integrin beta1 association. CD26 depletion does not decrease integrin beta1 expression but leads to dephosphorylation of both integrin beta1 and p38 mitogen-activated protein kinase (MAPK). Moreover, our data showing that the p38MAPK inhibitor SB203580 dephosphorylates integrin beta1 and that binding of the anti-CD26 antibody 202.36 dephosphorylates both p38MAPK and integrin beta1 on Karpas 299, leading to loss of cell adhesion to the extracellular matrix, indicate that CD26 mediates cell adhesion through p38MAPK-dependent phosphorylation of integrin beta1. Finally, in vivo experiments show that depletion of CD26 is associated with loss of tumorigenicity and greater survival. Our findings hence suggest that CD26 plays an important role in tumor development and may be a novel therapeutic target for selected neoplasms.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-0647DOI Listing

Publication Analysis

Top Keywords

integrin beta1
24
karpas 299
16
cd26
8
p38 mitogen-activated
8
mitogen-activated protein
8
phosphorylation integrin
8
beta1
8
adhesion extracellular
8
extracellular matrix
8
t-anaplastic large
8

Similar Publications

Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.

View Article and Find Full Text PDF

Integrin Trafficking, Fibronectin Architecture, and Glomerular Injury upon AdipoR1 Depletion.

J Am Soc Nephrol

January 2025

Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Background: Deficiency of adiponectin and its downstream signaling may contribute to the pathogenesis of kidney injury in type 2 diabetes. Adiponectin activates intracellular signaling via adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2), but the role of AdipoR-mediated signaling in glomerular injury in type 2 diabetes remains unknown.

Methods: The expression of AdipoR1 in the kidneys of people with type 2 diabetes and the expression of podocyte proteins or injury markers in the kidneys of AdipoR1-knockout (AdipoR1-KO) mice and immortalized AdipoR1-deficient human podocytes were investigated by immunohistochemistry and immunoblotting.

View Article and Find Full Text PDF

Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.

View Article and Find Full Text PDF

Exploring the Active Constituents of in Protecting the Skin Barrier and the Synergistic Effects with Collagen XVII.

Antioxidants (Basel)

January 2025

Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

is mainly used to treat skin inflammations, wounds, and infections. In this study, Andrographis Herba, the aerial part of the plant, was proven to increase the viability of UVB-damaged HaCat cells and reduce reactive oxygen species levels. The chemical composition of Andrographis Herba extract (AHE) was analyzed using UPLC-Q-TOF-MS, and diterpene lactones were identified as its primary constituents.

View Article and Find Full Text PDF

The porous structure is crucial in bone tissue engineering for promoting osseointegration. Among various structures, triply periodic minimal surfaces (TPMS) -Gyroid has been extensively studied due to its superior mechanical and biological properties. However, previous studies have given limited attention to the impact of unit cell size on the biological performance of scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!