2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine (CNDAC) is a nucleoside analogue with a novel mechanism of action that is currently being evaluated in clinical trials. Incorporation of CNDAC triphosphate into DNA and extension during replication leads to single-strand breaks directly caused by beta-elimination. These breaks, or the lesions that arise from further processing, cause cells to arrest in G2. The purpose of this investigation was to define the molecular basis for G2 checkpoint activation and to delineate the sequelae of its abrogation. Cell lines derived from diverse human tissues underwent G2 arrest after CNDAC treatment, suggesting a common mechanism of response to the damage created. CNDAC-induced G2 arrest was instituted by activation of the Chk1-Cdc25C-Cdk1/cyclin B checkpoint pathway. Neither Chk2, p38, nor p53 was required for checkpoint activation. Inhibition of Chk1 kinase with 7-hydroxystaurosporine (UCN-01) abrogated the checkpoint pathway as indicated by dephosphorylation of checkpoint proteins and progression of cells through mitosis and into G1. Cell death was first evident in hematologic cell lines after G1 entry. As indicated by histone H2AX phosphorylation, DNA damage initiated by CNDAC incorporation was transformed into double-strand breaks when ML-1 cells arrested in G2. Some breaks were manifested as chromosomal aberrations when the G2 checkpoint of CNDAC-arrested cells was abrogated by UCN-01 but also in a minor population of cells that escaped to mitosis during treatment with CNDAC alone. These findings provide a mechanistic rationale for the design of new strategies, combining CNDAC with inhibitors of cell cycle checkpoint regulation in the therapy of hematologic malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-0288DOI Listing

Publication Analysis

Top Keywords

molecular basis
8
checkpoint
8
checkpoint activation
8
cell lines
8
checkpoint pathway
8
cndac
6
cells
5
arrest
4
basis arrest
4
arrest induced
4

Similar Publications

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.

View Article and Find Full Text PDF

The remarkable diversity of insect pigmentation offers a captivating avenue for studying evolution and genetics. In tephritids, understanding the molecular basis of mutant traits is also crucial for applied entomology, enabling the creation of genetic sexing strains through genome editing, thus facilitating sex-sorting before sterile insect releases. Here, we present evidence from classical and modern genetics showing that the black pupae (bp) phenotype in the GUA10 strain of Anastrepha ludens is caused by a large deletion at the ebony locus, removing the gene's entire coding region.

View Article and Find Full Text PDF

Structural basis of phosphate export by human XPR1.

Nat Commun

January 2025

Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.

Phosphorus in crucial for all living organisms. In vertebrate, cellular phosphate homeostasis is partly controlled by XPR1, a poorly characterized inositol pyrophosphate-dependent phosphate exporter. Here, we report the cryo-EM structure of human XPR1, which forms a loose dimer with 10 transmembrane helices (TM) in each protomer.

View Article and Find Full Text PDF

Kinetoplastids are a clade of eukaryotic protozoans that include human parasitic pathogens like trypanosomes and Leishmania species. In these organisms, protein-coding genes are transcribed as polycistronic pre-mRNAs, which need to be processed by the coupled action of trans-splicing and polyadenylation to yield monogenic mature mRNAs. During trans-splicing, a universal RNA sequence, the spliced leader RNA (SL RNA) mini-exon, is added to the 5'-end of each mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!