Quantitative analysis of ZO-1 colocalization with Cx43 gap junction plaques in cultures of rat neonatal cardiomyocytes.

Microsc Microanal

Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC 29425, USA.

Published: June 2005

The gap junction (GJ) is an aggregate of intercellular channels that facilitates cytoplasmic interchange of ions, second messengers, and other molecules of less than 1000 Da between cells. In excitable organs such as heart and brain, GJs configure extended intercellular pathways for stable and long-term propagation of action potential. In a previous study in adult rat heart, we have shown that the Drosophila disks-large related protein ZO-1 shows low to moderate colocalization at myocyte borders with the GJ protein Cx43. In the present study, we detail a protocol for characterizing the pattern and level of colocalization of ZO-1 with Cx43 in cultures of neonatal myocytes at the level of individual GJ plaques. The data indicate that ZO-1 shows on average a partial 26.6% overlap (SD = 11.3%) with Cx43 GJ plaques. There is a strong positive correlation between GJ plaque size and area of ZO-1 colocalization, indicating that the level of associated ZO-1 scales with the area of the GJ plaque. Qualitatively, the most prominent colocalization occurs at the plaque perimeter. These studies may provide insight into the presently unknown biological function of ZO-1 interaction with Cx43.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S143192760505049XDOI Listing

Publication Analysis

Top Keywords

zo-1 colocalization
8
gap junction
8
zo-1
7
colocalization
5
cx43
5
quantitative analysis
4
analysis zo-1
4
colocalization cx43
4
cx43 gap
4
junction plaques
4

Similar Publications

Objectives: To investigate the natural product sulforaphane (SFN) in protection of membranous nephropathy (MN) by inhibiting oxidative stress-associated podocyte pyroptosis.

Materials And Methods: A passive Heymann nephritis (PHN) model was established and treated with SFN. Clinical manifestations were examined by testing 24-hr urine protein, albumin, total cholesterol, triglyceride, high-density and low-density lipoprotein levels.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.

View Article and Find Full Text PDF

The vascular response following injury is pivotal for successful bone-defect repair but constitutes a major hurdle in the field of regenerative medicine. Throughout this process, vessel stabilization is crucial to provide an adequate nutrient supply and facilitate efficient waste removal. Therefore, this study investigated whether promoting vascular stabilization improves bone defect repair outcomes.

View Article and Find Full Text PDF

Apical integrins as a switchable target to regulate the epithelial barrier.

J Cell Sci

December 2024

Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.

Tight junctions regulate epithelial barrier function and have been shown to be influenced by multiple classes of proteins. Apical integrins have been identified as potential regulators of epithelial barrier function; however, only indirect approaches have been used to measure integrin regulation of the epithelial barrier. Here, we used polymeric nanowires conjugated with anti-integrin β1 antibodies to specifically target apically localized integrins in either their closed or open conformation.

View Article and Find Full Text PDF

[ improves learning and memory functions of APP/PS1 transgenic mice by regulating brain fluid metabolism].

Nan Fang Yi Ke Da Xue Xue Bao

October 2024

Key Laboratory of Basic Pharmacology of Ministry of Education & Ministry of Education International Cooperation Joint Laboratory of Characteristic Ethnic Medicine, Zunyi Medical University, Zunyi 563000, China.

Objective: To explore the mechanism by which (YGS) improves learning and memory abilities of APP/PS1 transgenic mice in light of cerebral fluid metabolism regulation.

Methods: Three-month-old male APP/PS1 transgenic mice and wild-type C57BL/6 mice were both randomized into control group, model group, donepezil (1.67 mg/kg) group, and YGS (7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!