Rate constants for the attachment of DABCO (1,4-diazabicyclo[2.2.2]octane) to Fischer carbene complexes of the type (CO)(5)Cr=C(XR)C(6)H(4)Z (X = O and S) in dry MeCN at 25 degrees C are reported. Hammett rho values are 2.18 +/- 0.13 and 0.89 +/- 0.07 for DABCO reactions with (CO)(5)Cr=C(OMe)C(6)H(4)Z (10-Cr-Z) and (CO)(5)Cr=C(SMe)C(6)H(4)Z (11-Cr-Z), respectively. The rho values for the reaction of 10-Cr-Z and 11-Cr-Z with CH(CN)(2)(-) in 50% MeCN-50% H(2)O (v/v) are comparable to the present reactions. The reaction of DABCO with 10-Cr-Z is more closely related to the reaction of (n-Bu)(3)P with (CO)(5)W=C(OMe)C(6)H(5)-Z (23) which also provided a rho value 2.22. The much higher rho values and hence much higher reactivity of methoxy carbene complexes over the corresponding thiomethyl derivatives fit a pattern observed previously for alkoxide ion, OH(-), amine, and thiolate ion nucleophiles, and a rational explanation comes from the consideration of the substituent effects not only on the transition state but also on the reactant. A major difference between 10-Cr-Z and 11-Cr-Z is that the pi-donor effect of the methoxy group is much stronger than that of thiomethyl group. This leads to a substantial contribution of the zwitterionic form to the structure of 10-Cr-Z with much more localized positive charge on the methoxy group than the negative charge on the (CO)(5)Cr moiety. This leads to overall destabilization by an electron-withdrawing phenyl substituents resulting an increase in reactivity. The ethoxycarbene complexes are somewhat less reactive than their methoxy counterparts due to the somewhat more ground state stabilization through its stronger pi donor effect and partly due to steric crowding exerted by the slightly larger ethoxy group in the transition state. Higher k(1)(W)/k(1)(Cr) ratios for (thiomethyl)carbene complexes than methoxy or ethoxycarbene complexes are related to the intrinsic rate constant which is higher for ((thiomethyl)carbene)tungsten complexes than the corresponding Cr ones resulting in an enhanced ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic050349tDOI Listing

Publication Analysis

Top Keywords

carbene complexes
12
rho values
12
attachment dabco
8
fischer carbene
8
10-cr-z 11-cr-z
8
complexes corresponding
8
transition state
8
methoxy group
8
ethoxycarbene complexes
8
complexes
7

Similar Publications

Leveraging Intramolecular π-Stacking to Access an Exceptionally Long-Lived MC Excited State in an Fe(II) Carbene Complex.

J Am Chem Soc

January 2025

Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada.

The ability to manipulate excited-state decay cascades using molecular structure is essential to the application of abundant-metal photosensitizers and chromophores. Ligand design has yielded some spectacular results elongating charge-transfer excited state lifetimes of Fe(II) coordination complexes, but triplet metal-centered (MC) excited states─recently demonstrated to be critical to the photoactivity of isoelectronic Co(III) polypyridyls─have to date remained elusive, with temporally isolable examples limited to the picosecond regime. With this report, we show how strong-field donors and intramolecular π-stacking can conspire to stabilize a long-lived MC excited state for a remarkable 4.

View Article and Find Full Text PDF

New, asymmetric quinizarin-Au(I)-NHC complexes were designed, isolated, and fully characterised including by single crystal X-ray crystallography. Cytotoxicity studies showed effective growth inhibition in HeLa cervical cancer cells with IC values ranging from 2.4 μM to 5.

View Article and Find Full Text PDF

Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization.

Acc Chem Res

January 2025

Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.

ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation.

View Article and Find Full Text PDF

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

NHC-Au-xanthate complexes.

Chem Commun (Camb)

January 2025

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.

We report the synthesis, isolation, and comprehensive characterization of N-heterocyclic carbene gold xanthate (NHC-Au-X, X - xanthate) complexes. These easily accessible complexes demonstrate significant versatility as photocatalysts, facilitating [2+2]-cycloadditions, and as π-catalysts in the intramolecular hydroxylation of allenes and hydrohydrazination of alkynes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!