The electronic structures of D(4h)-M(2)(O(2)CH)(4) and the oxalate-bridged complexes D(2h)-[(HCO(2))(3)M(2)](2)(mu-O(2)CCO(2)) and D(4h)-[(HCO(2))(2)M(2)](4)(mu-O(2)CCO(2))(4) have been investigated by a symmetry analysis of their MM and oxalate-based frontier orbitals, as well as by electronic structure calculations on the model formate complexes (M = Mo and W {d(4)-d(4)}, Tc, Ru {d(6)-d(6)}, and Rh {d(7)-d(7)}). Significant changes in the ordering, interactions, and electronic occupation of the molecular orbitals (MOs) arise through both the progression from d(4) to d(7) metals and the change from second to third row transition metals. For M = Mo and W, the highest-occupied orbitals are delta based, while the lowest-unoccupied orbitals are oxalate pi based; for M = Tc, the highest-occupied orbitals are an energetically tight delta-based set of MOs, while the lowest-unoccupied orbitals are MM-based pi. For both Ru and Rh, the highest-occupied MOs are the MM pi* and delta*, respectively, while the lowest-unoccupied MOs, in both instances, are MM-based sigma. With the exception of M = Ru, all of the complexes are closed shell. From the progression M(2) --> [M(2)](2) --> [M(2)](4), we can envision the nature of bandlike structures for a 2-dimensional square grid of formula [M(2)(mu-O(2)CCO(2))](infinity). Only for Mo and W oxalates should good electronic communication between MM centers generate a band of significant width to lead to metallic conductivity upon oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic050053n | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Physics, Assam University, Silchar-788011, India.
Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India. Electronic address:
This study investigates the interaction of a synthetic bio-relevant molecule with C and BN nanorings, exploring their potential applications in sensing and drug delivery. Employing Density Functional Theory (DFT) at the ωB97XD level with the 6-31G(d,p) basis set, we computed the adsorption and electronic properties of the resulting nanocomplexes. A total of ten distinct configurations were identified for the interactions, with adsorption energies ranging from -6.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
City University of Hong Kong, Chemistry, HONG KONG.
Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.
View Article and Find Full Text PDFACS Mater Au
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
The integration of fluorinated benzothiadiazole (FBT) into donor-acceptor (D-A) copolymers represents a major advancement in the field of organic solar cells (OSCs). The fluorination process effectively fine-tunes the energy levels, reduces the highest occupied molecular orbital levels, and enhances the open-circuit voltages of the polymers. Furthermore, fluorination improves molecular packing and crystallinity, which significantly boosts the charge transport and overall device performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!