Deprotonation of an Al-SH moiety has been achieved easily by using N-heterocyclic carbene as the base. Monomeric mono- and bis-imidazolium salts [C(t)H(+)][LAl(SH)(S)](-) ([C(t)H(+)] = N,N'-bis-tert-butylimidazolium), [C(m)H(+)][LAl(SH)(S)](-), and [C(m)H(+)](2)[LAl(S)(2)](2-) ([C(m)H(+)] = N,N'-bismesitylimidazolium), containing unusual anions [LAl(SH)(S)](-) and [LAl(S)(2)](2-), have been synthesized in nearly quantitative yields. Furthermore, [C(m)H(+)](2)[LAl(S)(2)](2-) has been successfully used for the preparation of LAl(SSiMe(2))(2)O containing the [O(Me(2)SiS)(2)](2-) ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic050693qDOI Listing

Publication Analysis

Top Keywords

unusual anions
8
anions [lalshs]-
8
[lalshs]- [lals2]2-
8
[lals2]2- stabilized
4
stabilized weakly
4
weakly coordinating
4
coordinating imidazolium
4
imidazolium cations
4
cations synthesis
4
synthesis lalssime22o
4

Similar Publications

Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.

View Article and Find Full Text PDF

Cage-catenanes are chemical constructs where two or more cage-like molecules or assemblies are mechanically interlocked together. We report a new class of cage-catenanes where dimeric metal-organic cage-catenanes are linked into larger assemblies through additional bridging metal chloride links. These crystalline materials are obtained from the reaction of tris(nicotinoyl)cyclotriguaiacylene (L1) with Cu(II) salts, and all feature a tetramer of cages where two {Cu(L1)(X)} cages (X=anion) are mechanically interlocked, and link to each other and to another {Cu(L1)(X)} cage-catenane through a planar, linear tetranuclear {Cu(μ-Cl)Cl} cluster.

View Article and Find Full Text PDF

Proteins of obligate halophilic organisms have an unusually high number of acidic amino acids, thought to enable them to function in multimolar KCl environments. Clarifying the molecular scale mechanisms by which this occurs is relevant for biotechnology, to enable enzymatic synthesis of economically important small molecules in salty environments and other environments with low water activity. Previous studies have suggested that acidic amino acids are necessary at high salt concentration to keep the proteins hydrated by competing with the ions in solution for available water (the "solvent-only" model).

View Article and Find Full Text PDF

Harnessing Oxetane and Azetidine Sulfonyl Fluorides for Opportunities in Drug Discovery.

J Am Chem Soc

December 2024

Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.

Four-membered heterocycles such as oxetanes and azetidines represent attractive and emergent design options in medicinal chemistry due to their small and polar nature and potential to significantly impact the physiochemical properties of drug molecules. The challenging preparation of these derivatives, especially in a divergent manner, has severely limited their combination with other medicinally and biologically important groups. Consequently, there is a substantial demand for mild and effective synthetic strategies to access new oxetane and azetidine derivatives and molecular scaffolds.

View Article and Find Full Text PDF

The solvation of Na ions by ethoxylate moieties enhances adsorption of sulfonate surfactants at the air-water interface.

J Colloid Interface Sci

December 2024

Department of Chemical Engineering, University College London, Torrington Place WC1E 7JE, London, United Kingdom; School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, United States. Electronic address:

Hypothesis: Experiments show pronounced synergy in the reduction of surface tension when the nonionic surfactant Poly(oxy-1,2-ethanediyl), .alpha.-tris(1-phenylethyl)phenyl-.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!