Endothelial cell-smooth muscle cell co-culture in a perfusion bioreactor system.

Ann Biomed Eng

School of Chemical & Biomolecular Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.

Published: July 2005

AI Article Synopsis

  • Vascular endothelial cells (EC) and smooth muscle cells (SMC) are crucial for communicating and regulating blood vessel development and function in a complex biomechanical setting.
  • A vascular perfusion bioreactor was utilized to grow tubular constructs with EC and SMC under pulsatile shear stress for up to 25 days to explore how EC affects SMC activities.
  • The study found that longer co-culture periods (15 days) led to increased SMC proliferation and a more uniform cell distribution, highlighting the significant interactions between EC and SMC in a controlled laboratory environment, essential for advancing tissue engineering.

Article Abstract

Vascular endothelial cells (EC) are exposed to a complex biomechanical environment in vivo and are responsible for relaying important messages to the underlying tissue. EC and smooth muscle cells (SMC) communicate to regulate vascular development and function. In this work, a vascular perfusion bioreactor is used to grow tubular constructs seeded with EC and SMC under pulsatile shear stress in long-term co-culture to study the effects of EC on SMC function. SMC seeded into porous poly(glycolic acid) tubular scaffolds are cultured in the bioreactor for 25 days. Constructs are seeded with EC on day 10 or day 23 creating 2-day (short-term) or 15-day (long-term) EC and SMC co-cultures. Long-term EC-SMC co-culture significantly increases cell proliferation and downregulates collagen and proteoglycan deposition compared to short-term co-culture. After 25 days of culture, 15-day co-culture constructs have a more uniform cell distribution across the construct thickness and SMC express a more contractile phenotype compared to 2-day co-culture constructs. These data demonstrate strong interactions between SMC and EC in the bioreactor under physiologically relevant conditions. Thus, the vascular construct perfusion bioreactor is an important tool to investigate cell-cell and cell-extracellular matrix interactions in vascular cell biology and tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-005-3238-0DOI Listing

Publication Analysis

Top Keywords

perfusion bioreactor
12
constructs seeded
8
co-culture constructs
8
smc
7
co-culture
6
bioreactor
5
vascular
5
endothelial cell-smooth
4
cell-smooth muscle
4
cell
4

Similar Publications

Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield.

View Article and Find Full Text PDF

A 3D millifluidic model of a dermal perivascular microenvironment on a chip.

Lab Chip

January 2025

Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.

The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies.

View Article and Find Full Text PDF

Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells.

Appl Microbiol Biotechnol

January 2025

Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.

Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).

View Article and Find Full Text PDF

A proof-of-concept study in small and large animal models for coupling liver normothermic machine perfusion with mesenchymal stromal cell bioreactors.

Nat Commun

January 2025

General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy.

To fully harness mesenchymal-stromal-cells (MSCs)' benefits during Normothermic Machine Perfusion (NMP), we developed an advanced NMP platform coupled with a MSC-bioreactor and investigated its bio-molecular effects and clinical feasibility using rat and porcine models. The study involved three work packages: 1) Development (n = 5): MSC-bioreactors were subjected to 4 h-liverless perfusion; 2) Rat model (n = 10): livers were perfused for 4 h on the MSC-bioreactor-circuit or with the standard platform; 3) Porcine model (n = 6): livers were perfused using a clinical device integrated with a MSC-bioreactor or in its standard setup. MSCs showed intact stem-core properties after liverless-NMP.

View Article and Find Full Text PDF

High-fidelity computational fluid dynamics modeling to simulate perfusion through a bone-mimicking scaffold.

Comput Biol Med

December 2024

University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering, Boulder, CO, USA; Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA. Electronic address:

Breast cancer cells sense shear stresses in response to interstitial fluid flow in bone and induce specific biological responses. Computational fluid dynamics models have been instrumental in estimating these shear stresses to relate the cell mechanoresponse to exact mechanical signals, better informing experiment design. Most computational models greatly simplify the experimental and cell mechanical environments for ease of computation, but these simplifications may overlook complex cell-substrate mechanical interactions that significantly change shear stresses experienced by cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!