Temperature dependence of piezoelectric, elastic and dielectric coefficients at radial resonance of piezoceramics with an aurivillius-type structure.

IEEE Trans Ultrason Ferroelectr Freq Control

Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain.

Published: April 2005

Aurivillius-type structure compounds are considered good candidates for piezoelectric materials at high temperature, due to their high ferro-paraelectric phase transition temperature. Despite this fact, very few papers have been published on the study of piezoelectric properties at the expected working temperatures. An iterative automatic method has been used in this work to characterize the piezoelectric, electromechanical, and elastic properties at radial resonance of thin ceramic disks with composition (SrBi2Nb2O9)0.35(Bi3TiNbOg)0.65 [SBN/BTN 35/65], from room temperature up to the ferro-paraelectric phase transition. Ceramics were prepared by sintering or by recrystallization after hot-pressing of mechanically activated precursors. By this new method, ceramics with controlled texture and microstructure are obtained. The influence of the processing route in the properties of the ceramics, over the whole temperature range of piezoelectric activity, is discussed. Values of d31 = 2.1 pC/N and kp = 2.9% at 500 degrees C are achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tuffc.2005.1428038DOI Listing

Publication Analysis

Top Keywords

radial resonance
8
aurivillius-type structure
8
ferro-paraelectric phase
8
phase transition
8
temperature
5
piezoelectric
5
temperature dependence
4
dependence piezoelectric
4
piezoelectric elastic
4
elastic dielectric
4

Similar Publications

The cavitation water jet cleaning and coating removal technique represents an innovative sustainable method for cleaning and removing coatings, with the nozzle serving as a crucial component of this technology. Developing an artificially submerged nozzle with a reliable structure and excellent cavitation performance is essential for enhancing cavitation water jets' cleaning and coating removal efficacy in an atmosphere environment (non-submerged state). This study is based on the shear flow cavitation mechanism of an angular nozzle, the resonance principle of an organ pipe, and the jet pump principle.

View Article and Find Full Text PDF

Objective: This study aims to evaluate the efficacy of two free-breathing magnetic resonance imaging (MRI) sequences-spiral ultrashort echo time (spiral UTE) and radial volumetric interpolated breath-hold examination (radial VIBE).

Methods: Patients were prospectively enrolled between February 2021 and September 2022. All participants underwent both 3T MRI scanning, utilizing the radial VIBE sequence and spiral UTE sequence, as well as standard chest CT imaging.

View Article and Find Full Text PDF

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Background: With the approval of disease-modifying treatments for 5q-spinal muscular atrophy (SMA), there is an increasing need for biomarkers for disease course and therapeutic response monitoring. Radially sampled Averaged Magnetization Inversion Recovery Acquisitions (rAMIRA) MR-imaging enables spinal cord (SC) gray matter (GM) delineation and quantification in vivo. This study aims to assess SC GM atrophy in patients with 5q-SMA and its associations with clinical disability.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disorder leading to deleterious brain effects. While animal models suggested that MPS I severely affects white matter (WM), whole-brain diffusion tensor imaging (DTI) analysis was not performed due to MPS-related morphological abnormalities. 3T DTI data from 28 severe (MPS IH, treated with hematopoietic stem cell transplantation-HSCT), 16 attenuated MPS I patients (MPS IA) enrolled under the study protocol NCT01870375, and 27 healthy controls (HC) were analyzed using the free-water correction (FWC) method to resolve macrostructural partial volume effects and unravel differences in DTI metrics accounting for microstructural abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!