Osteolysis due to wear debris is a primary cause of failure of total joint replacements. Although debris produced by the joint articulating surfaces has been studied and simulated extensively, fretting wear debris, produced at nonarticulating surfaces, has not received adequate attention. We developed a three-station fretting wear simulator to reproduce in vivo motion and stresses at the interfaces of total joint replacements. The simulator is based on the beam bending theory and is capable of producing cyclic displacement from 3 to 1000 microns, under varying magnitudes of contact stresses. The simulator offers three potential advantages over previous studies: The ability to control the displacement by load, the ability to produce very small displacements, and dynamic normal loads as opposed to static. A pilot study was designed to test the functionality of the simulator, and verify that calculated displacements and loads produced the predicted differences between two commonly used porous ingrowth titanium alloy surfaces fretting against cortical bone. After 1.5 million cycles, the simulator functioned as designed, producing greater wear of bone against the rougher plasma-sprayed surface compared to the fiber-mesh surface, as predicted. A novel pin-on-disk apparatus for simulating fretting wear at orthopaedic implant interfaces due to micromotion is introduced. The test parameters measured with the fretting wear simulator were as predicted by design calculations, and were sufficient to measure differences in the height and weight of cortical bone pins rubbing against two porous ingrowth surfaces, plasma-sprayed titanium and titanium fiber mesh.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.1894121 | DOI Listing |
Adv Healthc Mater
January 2025
School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD4072, Australia.
The significance of biomedical applications of Ti alloys is best emphasized by their widespread utilization as implantable materials, such as internal supports and bone replacements. Ti alloys are sensitive to fretting wear, which leads to the early failure of Ti implants. Improved wear resistance of such implants is essential to ensure a prolonged implant life.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Powstancow Warszawy 8 Street, 35-959 Rzeszow, Poland.
The influence of ball burnishing on friction and wear at elevated temperatures under fretting conditions has not yet been reported. Fretting experiments were conducted using the Optimol SRV5 tester (Optimol Instruments, Munich, Germany) under dry gross fretting conditions. A ball of WC ceramic was pressed against a disc from the titanium alloy Ti6Al4V.
View Article and Find Full Text PDFActa Biomater
November 2024
Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany. Electronic address:
Modular hip implants are a clinically successful and widely used treatment for patients with arthritis. Despite ongoing retrieval studies the understanding of the fundamental physico-chemical mechanisms of friction and wear within the head-taper interface is still limited. Here, we Raman-spectroscopically analyze structural features of the biotribological material which is formed within the taper joint between Ti6Al4V and low-carbon cobalt alloy or high-nitrogen steel surfaces in in vitro gross-slip fretting corrosion tests with bovine calf serum.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China.
The nickel-based alloy Inconel 600, strengthened by solution treatment, finds extensive application as a heat exchange pipe material in steam generators within nuclear power plants, owing to its exceptional resistance to high-temperature corrosion. However, fretting corrosion occurs at the contact points between the pipe and support frame due to gas-liquid flow, leading to wear damage. This study investigates the fretting wear behavior and damage mechanism of the nickel-based alloy Inconel 600 and 304 stainless steel friction pairs under point contact conditions in a water environment.
View Article and Find Full Text PDFMaterials (Basel)
May 2024
School of Mechanical Engineering, Tianjin University, Tianjin 300350, China.
The fretting wear behaviors of silicone rubber under dry friction and different lubrication conditions are studied experimentally. Water, engine oil, dimethyl silicone oil (DSO), and dimethyl silicone oil doped with graphene oxide (DSO/GO) are selected as lubricants. Under the liquid lubrication conditions, the silicone rubber samples are always immersed in the same volume of lubricant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!