When subjects made a saccade across a single-flashed dot, a flickering dot or a continuous dot, they perceived a dot, an array (phantom array), or a line (phantom line), respectively. We asked subjects to localize both endpoints of the phantom array or line and calculated the perceived lengths. Based on the findings of Matsumiya and Uchikawa (2001), we predicted that the apparent length of the phantom line would be larger than that of the phantom array. In Experiment 1 of the current study, contrary to the prediction, the phantom line was found to be shorter than the phantom array. In Experiment 2, we investigated whether the function underlying the filled-unfilled space illusion (Lewis, 1912) instead of the function underlying the saccadic compression could explain the results. Subjects were asked to localize both endpoints of a line or an array while keeping their eyes fixated. Although the results of Experiment 2 showed that the perceived length of a line was shorter than that of an array, the function underlying the filled-unfilled illusion could not fully account for the results of Experiment 1. To explain the present results, we proposed a model for the localization process and discussed its validity.

Download full-text PDF

Source
http://dx.doi.org/10.1163/1568568054089384DOI Listing

Publication Analysis

Top Keywords

phantom array
16
function underlying
12
array phantom
8
localize endpoints
8
array experiment
8
underlying filled-unfilled
8
array
7
phantom
7
continuously lit
4
lit stimulus
4

Similar Publications

The use of photoacoustic brain imaging for hemorrhage detection holds significant clinical importance. This study focuses on the performance of sensitivity and detection capabilities of a single-element scanning system, considering the remarkable signal-to-noise ratio of photoacoustic signals generated by a single-element transducer. By employing blood vessel-like phantoms and ex vivo brain phantoms, we demonstrated the superior efficacy of the single-element scanning method over the transducer array system in the context of brain hemorrhage detection.

View Article and Find Full Text PDF

Background: High-dose-rate (HDR) brachytherapy using Iridium-192 as a radiation source is widely employed in cancer treatment to deliver concentrated radiation doses while minimizing normal tissue exposure. In this treatment, the precision with which the sealed radioisotope source is delivered significantly impacts clinical outcomes.

Purpose: This study aims to evaluate the feasibility of a new four-dimensional (4D) in vivo source tracking and treatment verification system for HDR brachytherapy using a patient-specific approach.

View Article and Find Full Text PDF

Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g.

View Article and Find Full Text PDF

. In-beam positron emission tomography (PET) has important development prospects in real-time monitoring of proton therapy. However, in the beam-on operation, the high bursts of radiation events pose challenges to the performance of the PET system.

View Article and Find Full Text PDF

Accurate diagnosis and monitoring of neurodegenerative diseases require reliable biomarkers. Cerebrospinal fluid (CSF) proteins are promising candidates for reflecting brain pathology; however, their diagnostic utility may be compromised by natural variability between individuals, weakening their association with disease. Here, we measured the levels of 69 pre-selected proteins in cerebrospinal fluid using antibody-based suspension bead array technology in a multi-disease cohort of 499 individuals with neurodegenerative disorders including Alzheimer's disease (AD), behavioral variant frontotemporal dementia, primary progressive aphasias, amyotrophic lateral sclerosis (ALS), corticobasal syndrome, primary supranuclear palsy, along with healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!