Pro-neural factors and neurogenesis.

Dev Dyn

Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA.

Published: November 2005

The role of pro-neural factors in specifying neuronal progenitors and in promoting neuronal differentiation is conserved from Drosophila to vertebrates. This primer discusses the basic functions of pro-neural factors in neurogenesis, mechanisms of pro-neural factor function, and models for how pro-neural factors generate neuronal subtypes. The primer also features a dialog about current topics and future directions in the field between two experts in neurogenesis: Andrew Jarman, Ph.D., and Jane Johnson, Ph.D.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.20522DOI Listing

Publication Analysis

Top Keywords

pro-neural factors
16
factors neurogenesis
8
pro-neural
5
neurogenesis role
4
role pro-neural
4
factors neuronal
4
neuronal progenitors
4
progenitors promoting
4
promoting neuronal
4
neuronal differentiation
4

Similar Publications

Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.

View Article and Find Full Text PDF

Mutations reducing the function of MYT1L, a neuron-specific transcription factor, are associated with a syndromic neurodevelopmental disorder. MYT1L is used as a pro-neural factor in fibroblast-to-neuron transdifferentiation and is hypothesized to influence neuronal specification and maturation, but it is not clear which neuron types are most impacted by MYT1L loss. In this study, we profile 412,132 nuclei from the forebrains of wild-type and MYT1L-deficient mice at three developmental stages: E14 at the peak of neurogenesis, P1 when cortical neurons have been born, and P21 when neurons are maturing, to examine the role of MYT1L levels on neuronal development.

View Article and Find Full Text PDF

Direct pro-neural reprogramming is a conversion of differentiated somatic cells to neural cells without an intermediate pluripotency stage. It is usually achieved via ectopic expression (EE) of certain transcription factors (TFs) or other reprogramming factors (RFs). Determining the transcriptional changes (TCs) caused by particular RFs in a given cell line enables an informed approach to reprogramming initiation.

View Article and Find Full Text PDF

The pro-neural transcription factor neurogenin-2 (NGN2) possesses the ability to rapidly and effectively transform stem cells into fully operational neurons. Here we report the successful generation of a modified H9 human embryonic H9 stem cell line containing a doxycycline (DOX) inducible NGN2 expression construct featuring a floxed Blasticidin/mApple selection module in the safe-harbor locus CLYBL. This cell line retains its pluripotent state in the absence of DOX, yet readily transitions into a neuronal state upon DOX introduction.

View Article and Find Full Text PDF
Article Synopsis
  • Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are complex cancers influenced by the interaction of tumor cells with their surrounding microenvironment, necessitating the study of tumor-derived signals.
  • Researchers utilized digital spatial profiling (DSP) to analyze the expression of immune and neural proteins in a variety of GEP-NETs, demonstrating that immune-related proteins may facilitate neuroendocrine differentiation and tumor growth.
  • The findings indicated notable differences between gastrin-secreting and non-functional NETs, particularly in protein expression and immune cell presence, with MEN1-related tumors showing strong immune exclusion and unique neuro-immune signatures.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!