Porous poly(epsilon-caprolactone-co-L-lactide) (P(CL-co-LA, wt % ca. 5/95) sponges were prepared, coated biomimetically with CaP/apatite, and implanted with noncoated control sponges into rat femur cortical defects and dorsal subcutaneous space. The implants were inspected histologically at 2, 4, and 33 weeks after the operation. All implants were filled with fibrovascular tissue within 4 weeks. The femur implants were partially ossified with compact bone, which in the CaP-coated sponges was less mature and more fragmented. Approximately equal amounts of bone were observed in both types of implants. The polymer induced a mild inflammatory reaction with foreign body giant cells but no accumulation of fluid. Degradation of the polymer was slow; most of it was found intact at 33 weeks in histological samples. Nondegraded polymer seems to prevent complete ossification. Cultured osteoblasts proliferated well on apatite-coated material, whereas only a few cells were seen on noncoated material. Thus CaP/apatite coating helped the attachment of osteoblasts in cell cultures but did not offer any advantage in bone formation over noncoated material in vivo. We conclude that a shorter degradation time of P(CL-co-LA) is needed to create an optimal implant. Furthermore, in vivo experiments seem to be necessary for the estimation of osteopromotive properties of a biomaterial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.30418 | DOI Listing |
Nanotechnology
January 2025
Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.
Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are porous, crystalline materials with high surface area, adjustable porosity, and structural tunability, making them ideal for diverse applications. However, traditional experimental and computational methods have limited scalability and interpretability, hindering effective exploration of MOF structure-property relationships. To address these challenges, we introduce, for the first time, a category-specific topological learning (CSTL), which combines algebraic topology with chemical insights for robust property prediction.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!