Unlabelled: In monkeys, long-term strontium ranelate administration results in a dose-dependent bone strontium uptake (mainly into newly formed bone) that preserves the degree of mineralization of bone and the bone mineral at the crystal level, showing its safety at bone mineral level.
Introduction: Strontium ranelate simultaneously increases bone formation and decreases bone resorption, leading to prevention of bone loss and increase in bone mass and bone strength in normal and ovariectomized rats. This study investigated the interactions of stable strontium (Sr) with bone mineral in monkeys after long-term strontium ranelate treatment and after a period of treatment withdrawal.
Materials And Methods: Iliac bone was obtained from untreated monkeys, monkeys at the end of a 52-week strontium ranelate administration (200, 500, 1250 mg/kg/day orally), and in parallel groups 10 weeks after the end of strontium ranelate administration (same three doses; n = 3-7). Sr uptake and distribution in bone mineral were quantified by X-ray microanalysis, changes at the crystal level by X-ray diffraction, and the degree of mineralization of bone (DMB) by quantitative microradiography.
Results: After strontium ranelate administration, dose-dependent Sr uptake occurred into cortical and cancellous bone, with higher content (1.6 times) in new than in old bone. This Sr uptake decreased (50%) 10 weeks after treatment withdrawal; the decrease occurred almost exclusively in new bone. At the end of strontium ranelate treatment and after its withdrawal, a preservation of crystal characteristics was observed, suggesting that Sr was only faintly linked to crystals by ionic substitution and of DMB.
Conclusions: These results show the absence of a deleterious effect of long-term strontium ranelate treatment on bone mineralization, confirming the histomorphometric observations made in postmenopausal osteoporotic women treated with strontium ranelate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/JBMR.050405 | DOI Listing |
Cureus
November 2024
Orthopedics and Traumatology, Santo António University Hospital Center, Porto, PRT.
Int J Biol Macromol
December 2024
Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China. Electronic address:
Magnesium oxychloride cement (MOC) has the advantage of high early strength. However, it has the defect of poor water resistance. Considering this performance, we use γ-polyglutamic acid (γ-PGA) and chitosan (CS) to modify MOC.
View Article and Find Full Text PDFBone
January 2025
Pharmacoepidemiology and Pharmacovigilance Department, Spanish Agency of Medicines and Medical Devices (AEMPS), Calle Campezo n° 1, Edificio 8, 28022 Madrid, Spain. Electronic address:
Osteoarthritis Cartilage
January 2025
Department of Radiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA; Department of Radiology, Boston VA Healthcare System, West Roxbury, MA, USA.
Objective: To review recent literature evidence describing imaging of osteoarthritis (OA) and to identify the current trends in research on OA imaging.
Method: This is a narrative review of publications in English, published between April, 2023, and March, 2024. A Pubmed search was conducted using the following search terms: osteoarthritis/OA, radiography, ultrasound/US, computed tomography/CT, magnetic resonance imaging/MRI, DXA/DEXA, and artificial intelligence/AI/deep learning.
J Nanobiotechnology
October 2024
Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!