High level of dexterity: differential contributions of frontal and parietal areas.

Neuroreport

Mediterranean Institute of Cognitive Neuroscience (INCM), CNRS University of the Mediterranean, 31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.

Published: August 2005

In the present functional magnetic resonance imaging experiment, study participants performed a dynamic tracking task in a precision grip configuration. The precision level of the force control was varied while the mean force level of 5 N was kept constant. Contrasts cancelling error rate differences between the conditions showed activation of nonprimary motor areas and other frontal structures in response to increasing precision constraints when the precision of force control could still be increased, and of right primary and associative parietal areas when the precision of the produced force control reached its maximum. These results suggest that the network of frontal and parietal areas, usually working together in fine control of dexterity tasks, can be differentially involved when environmental constraints become very high.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.wnr.0000176514.17561.94DOI Listing

Publication Analysis

Top Keywords

parietal areas
12
force control
12
frontal parietal
8
precision
5
high level
4
level dexterity
4
dexterity differential
4
differential contributions
4
contributions frontal
4
areas
4

Similar Publications

Cerebral arteriovenous malformations (AVMs) are rare but complex vascular anomalies, particularly challenging when located in eloquent regions such as the corpus callosum and post-central gyrus. This report aims to highlight the management and outcomes of a 41-year-old female patient with a hemorrhagic AVM in these critical areas, emphasizing the importance of early surgical intervention and advanced imaging techniques. The patient presented with a right-sided tonic-clonic seizure and expressive aphasia, prompting imaging that revealed a complex AVM with deep venous drainage and arterial supply from the anterior cerebral artery.

View Article and Find Full Text PDF

Contributions of the Primary Sensorimotor Cortex and Posterior Parietal Cortex to Motor Learning and Transfer.

Brain Sci

November 2024

Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan.

Background: Transferring learned manipulations to new manipulation tasks has enabled humans to realize thousands of dexterous object manipulations in daily life. Two-digit grasp and three-digit grasp manipulations require different fingertip forces, and our brain can switch grasp types to ensure good performance according to motor memory. We hypothesized that several brain areas contribute to the execution of the new type of motor according to the motor memory.

View Article and Find Full Text PDF

Chronic cannabis use differentially modulates neural oscillations serving the manipulate versus maintain components of working memory processing.

Neurobiol Dis

January 2025

Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA. Electronic address:

The legalization of recreational cannabis use has expanded the availability of this psychoactive substance in the United States. Research has shown that chronic cannabis use is associated with altered working memory function, however, the brain areas and neural dynamics underlying these affects remain poorly understood. In this study, we leveraged magnetoencephalography (MEG) to investigate neurophysiological activity in 45 participants (22 heavy cannabis users) during a numerical WM task, whereby participants were asked to either maintain or manipulate (i.

View Article and Find Full Text PDF

The ability to estimate numerical magnitude is essential for decision-making and is thought to underlie arithmetic skills. In humans, neural populations in the frontoparietal regions are tuned to represent numerosity. However, it remains unclear whether their response properties are fixed to a specific numerosity (i.

View Article and Find Full Text PDF

Key shifts in frontoparietal network activity in Parkinson's disease.

NPJ Parkinsons Dis

January 2025

Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!