Reconstruction of human optic nerve heads for finite element modeling.

Technol Health Care

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.

Published: December 2005

Purpose: Glaucoma is a common ocular disease whose pathogenesis is hypothesized to involve biomechanical damage to optic nerve tissues. Here we describe a method for the construction of patient-specific models that can be used to evaluate the biomechanical environment within the optic nerve head. We validate the method using a virtual eye, and demonstrate its use in computing optic nerve head biomechanics.

Methods: Human eyes were imaged and the optic nerve head region was processed to allow serial plastic histologic sections to be cut. These sections were photographed, unwarped and aligned so as to reconstruct three-dimensional patient-specific models incorporating sclera, pre- and post-laminar nerve, lamina cribrosa, and pia mater. Deformations, stresses and strains were computed in the resulting model using finite element techniques.

Results: The approach successfully reconstructed patient-specific optic nerve head models. Reconstruction of a virtual eye showed excellent agreement between the true and reconstructed geometries, and between the deformations and strains computed on the true and reconstructed geometries. A sample reconstruction showed reasonable agreement between computed and measured retinal surface deformations.

Conclusion: The technique presented here is viable and can be used to accurately compute human optic nerve head biomechanics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

optic nerve
28
nerve head
20
human optic
8
nerve
8
finite element
8
patient-specific models
8
virtual eye
8
strains computed
8
true reconstructed
8
reconstructed geometries
8

Similar Publications

To investigate macula and optic nerve head (ONH) mitochondrial metabolic activity using flavoprotein fluorescence (FPF) in normal, glaucoma suspect (GS), and open-angle glaucoma (OAG) eyes we performed a cross-sectional, observational study of FPF in normal, GS, and OAG eyes. The macula and ONH of each eye was scanned and analyzed with a commercially available FPF measuring device (OcuMet Beacon, OcuSciences Inc., Ann Arbor, MI).

View Article and Find Full Text PDF

Purpose: To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS).

Methods: UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors).

View Article and Find Full Text PDF

Purpose: To report on optical coherence tomography angiography (OCTA) in patients with a type 1 Boston keratoprosthesis (KPro) and determine its feasibility through assessment of imaging artifacts.

Methods: KPro and non-KPro subjects were matched for age, gender, and glaucoma diagnosis. OCTA images of the peripapillary optic nerve were obtained, reviewed by 2 readers masked to the diagnosis for artifacts and usability, and used for microvascular measurements.

View Article and Find Full Text PDF

This study presents TOM500, a comprehensive multi-organ annotated orbital magnetic resonance imaging (MRI) dataset. It includes clinical data, T2-weighted MRI scans, and corresponding segmentations from 500 patients with thyroid eye disease (TED) during their initial visit. TED is a common autoimmune disorder with distinct orbital MRI features.

View Article and Find Full Text PDF

The most common diagnostic error of IIH is inaccurate funduscopic examination. Moreover, IIH could be diagnosed without papilledema. Trans orbital sonography could be used as a non-invasive and cheap tool for discovering increased ICP (intracranial Pressure).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!