Purpose: Glaucoma is a common ocular disease whose pathogenesis is hypothesized to involve biomechanical damage to optic nerve tissues. Here we describe a method for the construction of patient-specific models that can be used to evaluate the biomechanical environment within the optic nerve head. We validate the method using a virtual eye, and demonstrate its use in computing optic nerve head biomechanics.
Methods: Human eyes were imaged and the optic nerve head region was processed to allow serial plastic histologic sections to be cut. These sections were photographed, unwarped and aligned so as to reconstruct three-dimensional patient-specific models incorporating sclera, pre- and post-laminar nerve, lamina cribrosa, and pia mater. Deformations, stresses and strains were computed in the resulting model using finite element techniques.
Results: The approach successfully reconstructed patient-specific optic nerve head models. Reconstruction of a virtual eye showed excellent agreement between the true and reconstructed geometries, and between the deformations and strains computed on the true and reconstructed geometries. A sample reconstruction showed reasonable agreement between computed and measured retinal surface deformations.
Conclusion: The technique presented here is viable and can be used to accurately compute human optic nerve head biomechanics.
Download full-text PDF |
Source |
---|
PLoS One
January 2025
Department of Ophthalmology, University of Washington, Seattle, WA, United States of America.
To investigate macula and optic nerve head (ONH) mitochondrial metabolic activity using flavoprotein fluorescence (FPF) in normal, glaucoma suspect (GS), and open-angle glaucoma (OAG) eyes we performed a cross-sectional, observational study of FPF in normal, GS, and OAG eyes. The macula and ONH of each eye was scanned and analyzed with a commercially available FPF measuring device (OcuMet Beacon, OcuSciences Inc., Ann Arbor, MI).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
Purpose: To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS).
Methods: UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors).
Cornea
January 2025
Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA.
Purpose: To report on optical coherence tomography angiography (OCTA) in patients with a type 1 Boston keratoprosthesis (KPro) and determine its feasibility through assessment of imaging artifacts.
Methods: KPro and non-KPro subjects were matched for age, gender, and glaucoma diagnosis. OCTA images of the peripapillary optic nerve were obtained, reviewed by 2 readers masked to the diagnosis for artifacts and usability, and used for microvascular measurements.
Sci Data
January 2025
Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
This study presents TOM500, a comprehensive multi-organ annotated orbital magnetic resonance imaging (MRI) dataset. It includes clinical data, T2-weighted MRI scans, and corresponding segmentations from 500 patients with thyroid eye disease (TED) during their initial visit. TED is a common autoimmune disorder with distinct orbital MRI features.
View Article and Find Full Text PDFSci Rep
January 2025
Assistant Professor of Neurology, Department of Neurology, Tanta University, Tanta, Egypt.
The most common diagnostic error of IIH is inaccurate funduscopic examination. Moreover, IIH could be diagnosed without papilledema. Trans orbital sonography could be used as a non-invasive and cheap tool for discovering increased ICP (intracranial Pressure).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!