Positive pressure infusion is a clinical means of achieving convection-enhanced delivery of therapeutic agents within the tissues of the central nervous system for the treatment of glioblastoma multiforme and other diseases of the brain. We have developed a mathematical model of the technique and an in vitro gelatin surrogate for it, which provide biophysical insights into the performance characteristics of candidate infusion systems and drug delivery protocols. We present a brief overview of the clinical problems that are being addressed, succinctly describe the mathematical and in vitro models used in our laboratories, and highlight some representative results from our studies. A number of references to related work are provided for those seeking further details.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!