A flavonoids-free Brazilian propolis (type 6) showed biological effects against mutans streptococci and inhibited the activity of glucosyltransferases. This study evaluated the influence of the ethanolic extract of a novel type of propolis (EEP) and its purified hexane fraction (EEH) on mutans streptococci biofilms and the development of dental caries in rats. The chemical composition of the propolis extracts were examined by gas chromatography/mass spectrometry. The effects of EEP and EEH on Streptococcus mutans UA159 and Streptococcus sobrinus 6715 biofilms were analysed by time-kill and glycolytic pH drop assays. Their influence on proton-translocating F-ATPase activity was also tested. In the animal study, the rats were infected with S. sobrinus 6715 and fed with cariogenic diet 2000. The rats were treated topically twice a day with each of the extracts (or control) for 5 weeks. After the experimental period, the microbial composition of their dental plaque and their caries scores were determined. The results showed that fatty acids (oleic, palmitic, linoleic and stearic) were the main compounds identified in EEP and EEH. These extracts did not show major effects on the viability of mutans streptococci biofilms. However, EEP and EEH significantly reduced acid production by the biofilms and also inhibited the activity of F-ATPase (60-65%). Furthermore, both extracts significantly reduced the incidence of smooth surface caries in vivo without displaying a reduction of the percentage of S. sobriuns in the animals' plaque (P < 0.05). However, only EEH was able to reduce the incidence and severity of sulcal surface caries (P < 0.05). The data suggest that the cariostatic properties of propolis type 6 are related to its effect on acid production and acid tolerance of cariogenic streptococci; the biological activities may be attributed to its high content of fatty acids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2005.06.002 | DOI Listing |
Int J Clin Pediatr Dent
September 2024
Department of Microbiology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India.
Background And Aim: Streptococci, mainly mutans streptococci, are known as the causative microbes of dental caries, but there is limited clarity about their impact on the tooth level and the distribution of streptococci species in different dentition stages. This study evaluates the distribution of streptococci species in primary and permanent teeth in children and adolescents with caries.
Materials And Methods: The study population consisted of two groups: subjects with caries in primary teeth aged 2-5 years and adolescents with caries in permanent teeth aged 12-15 years.
Photochem Photobiol Sci
December 2024
Department of Health Sciences and Pediatric Dentistry, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), P.O. BOX 52, Av. Limeira, 901, Piracicaba, SP, 13414-903, Brazil.
The study aimed to assess the impact of combining potassium iodide (KI) with methylene blue (MB) in antimicrobial photodynamic therapy (aPDT) within an oral biofilm formed in situ. A single-phase, 14 days in situ study involved 21 volunteers, who wore a palatal appliance with 8 bovine dentin slabs. These slabs were exposed to a 20% sucrose solution 8 times a day, simulating a high cariogenic challenge.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2024
Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA.
J Dent Res
December 2024
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Dental caries, associated with plaque biofilm, is highly prevalent and significantly burdens public health. is the main cariogenic bacteria that adheres to the tooth surface and forms an abundant extracellular polysaccharide matrix (EPS) as a cariogenic biofilm scaffold. RNase III-encoding gene () and a putative chromosome segregation protein-encoding gene () are potentially associated with EPS production.
View Article and Find Full Text PDFCrit Rev Microbiol
November 2024
Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
Extracellular vesicles (EVs) are cell membrane-derived structures between 20-400 nm in size. In bacteria, EVs play a crucial role in molecule secretion, cell wall biogenesis, cell-cell communication, biofilm development, and host-pathogen interactions. Despite these increasing reports of bacterial-derived vesicles, there remains a limited number of studies that summarize oral bacterial EVs, their cargo, and their main biological functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!