Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here we have tested whether tau modification either by point mutation or by hyperphosphorylation can exert maximal pathogenic effects or if, on the contrary, both types of tau modifications can act synergistically to induce neuropathology. For this, we have combined transgenic mice overexpressing the enzyme GSK-3beta (Tet/GSK-3beta mice), with transgenic mice expressing Tau with a triple FTDP-17 mutation which develop prefibrillar tau-aggregates (VLW mice). Tet/GSK-3beta/VLW transgenic mice show tau hyperphosphorylation in hippocampal neurons. This is accompanied by thioflavin-S staining, and formation of filaments similar in width to those found in tauophaties. Finally, the atrophy of the hippocampal dentate gyrus observed in Tet/GSK-3beta mice develops much faster in Tet/GSK-3beta/VLW mice. All these morphological and biochemical data demonstrate that there is a synergistic contribution of both types of tau modifications and that the potential of GSK-3 inhibitors for AD therapeutics also extends to tauopathies caused by point mutations in tau gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2005.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!