The transient receptor potential (TRP) channels are implicated in various cellular processes, including sensory signal transduction and electrolyte homeostasis. We show here that the GTL-1 and GON-2 TRPM channels regulate electrolyte homeostasis in the C. elegans intestine. GON-2 is responsible for a large outwardly rectifying current of intestinal cells, and its activity is tightly regulated by intracellular Mg(2+) levels, while GTL-1 mainly contributes to appropriate Mg(2+) responsiveness of the outwardly rectifying current. We also used nickel cytotoxicity to study the function of these channels. Both GON-2 and GTL-1 are necessary for intestinal uptake of nickel, but GTL-1 is continuously active while GON-2 is inactivated at higher Mg(2+) levels. This type of differential regulation of intestinal electrolyte absorption ensures a constant supply of electrolytes through GTL-1, while occasional bursts of GON-2 activity allow rapid return to normal electrolyte concentrations following physiological perturbations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2241660 | PMC |
http://dx.doi.org/10.1016/j.cmet.2005.04.007 | DOI Listing |
Int J Biol Macromol
December 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
This study investigated the protective effects and Pb-excretion mechanisms of yeast glucans (YG) with varying oxidation degrees in Pb-exposed mice. Results demonstrated that all three glucans effectively reduced blood lead levels, alleviated inflammation, and mitigated liver damage in Pb-exposed mice, with highly oxidized yeast glucan (OYG2) exhibiting the greatest efficacy. Furthermore, the glucans attenuated Pb-induced oxidative stress and pathological changes in the kidney by elevating glutathione and superoxide dismutase levels, thereby restoring renal excretory function (blood urea nitrogen and creatinine).
View Article and Find Full Text PDFG Ital Cardiol (Rome)
January 2025
U.O.C. Cardiologia 1-Emodinamica, Dipartimento Cardiotoracovascolare "A. De Gasperis", ASST Grande Ospedale Metropolitano Niguarda, Milano.
Potassium is the most represented intracellular electrolyte in the human body. Its extracellular levels are maintained within strict limits through different mechanisms, which constitute the homeostasis of potassium. Hyperkalemia is the most common electrolyte disorder in patients with cardiovascular disease.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China.
Introduction: Lung injury, a common complication of sepsis, arises from elevated reactive oxygen species (ROS), mitochondrial dysfunction, and cell death driven by inflammation. In this study, a novel class of ultrasmall nanoparticles (CuO USNPs) was developed to address sepsis-induced lung injury (SILI).
Methods: The synthesized nanoparticles were thoroughly characterized to assess their properties.
Crit Care
December 2024
Division of Anesthesia, Critical Care, Pain and Emergency Medicine, UR‑UM103 IMAGINE, University of Montpellier, Nimes University Hospital, Nîmes, France.
Background: In septic shock, the classic fluid resuscitation strategy can lead to a potentially harmful positive fluid balance. This multicenter, randomized, single-blind, parallel, controlled pilot study assessed the effectiveness of a restrictive fluid strategy aiming to limit daily volume.
Methods: Patients 18-85 years' old admitted to the ICU department of three French hospitals were eligible for inclusion if they had septic shock and were in the first 24 h of vasopressor infusion.
Plant Mol Biol
December 2024
Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, 411-8540, Japan.
Inorganic polyphosphate (polyP) is a linear polymer of phosphate that plays various roles in cells, including in phosphate and metal homeostasis. Homologs of the vacuolar transporter chaperone 4 (VTC4), catalyzing polyP synthesis in many eukaryotes, are absent in red algae, which are among the earliest divergent plant lineages. We identified homologs of polyphosphate kinase 1 (PPK1), a conserved polyP synthase in bacteria, in 42 eukaryotic genomes, including 31 species detected in this study and 12 species of red algae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!