Objectives: The aim of this study was to examine whether selective plasminogen activator inhibitor type 1 (PAI-1) downregulation in the acutely ischemic heart increases the myocardial microvasculature and improves cardiomyocyte (CM) survival.

Background: Endogenous myocardial neovascularization is an important process enabling cardiac functional recovery after acute myocardial infarction. Expression of PAI-1, a potent inhibitor of angiogenesis, is induced in ischemic heart tissue.

Methods: A sequence-specific catalytic deoxyribonucleic acid (DNA) enzyme was used to reduce PAI-1 levels in cultured endothelial cells and in ischemic myocardium. At the time of coronary artery ligation, rats were randomized into three groups, each receiving an intramyocardial injection (IMI) of a single dose at three different sites of the peri-infarct region consisting, respectively, of DNA enzyme E2 targeting rat PAI-1 (E2), scrambled control DNA enzyme (E0), or saline. Cardiomyocyte apoptosis, capillary density, and echocardiography were studied two weeks following infarction.

Results: The E2 DNA enzyme, which efficiently inhibited rat PAI-1 expression in vitro, induced prolonged suppression (>2 weeks) of PAI-1 messenger ribonucleic acid and protein in rat heart tissues after a single IMI. At two weeks, hearts from experimental rats had over five-fold greater capillary density, 70% reduction in apoptotic CMs, and four-fold greater functional recovery compared with controls.

Conclusions: These results imply a causal relationship between elevated PAI-1 levels in ischemic hearts and adverse outcomes, and they suggest that strategies to reduce cardiac PAI-1 activity may augment neovascularization and improve functional recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacc.2005.04.047DOI Listing

Publication Analysis

Top Keywords

dna enzyme
16
functional recovery
12
plasminogen activator
8
myocardial neovascularization
8
cardiomyocyte apoptosis
8
acute myocardial
8
myocardial infarction
8
pai-1
8
ischemic heart
8
pai-1 levels
8

Similar Publications

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Successful Diagnosis of Sengers Syndrome Using a Comprehensive Genomic Analysis.

Mol Genet Genomic Med

January 2025

Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.

Background: Sengers syndrome is an autosomal recessive mitochondrial DNA depletion syndrome characterized by hypertrophic cardiomyopathy, congenital cataracts, skeletal myopathy, exercise intolerance, and lactic acidosis. Dysfunction of acylglycerol kinase (AGK) is responsible for the disease, and several AGK gene variants have been reported.

Methods: We employed a comprehensive genomic analysis approach, including whole-genome sequencing and RNA sequencing, combined with various bioinformatics tools.

View Article and Find Full Text PDF

Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).

View Article and Find Full Text PDF

Type II restriction-modification (R-M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT).

View Article and Find Full Text PDF

Identification and Characterization of a Protease Producing Strain From Tannery Waste for Efficient Dehairing of Goat Skin.

Biomed Res Int

January 2025

Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.

Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!