P53 and beta-catenin activity during estrogen treatment of osteoblasts.

Cancer Cell Int

Department of Biochemistry, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.

Published: July 2005

Background: This study was undertaken to examine the relationship between the tumor suppressor gene p53 and the nuclear signaling protein beta-catenin during bone differentiation. Cross talk between p53 and beta-catenin pathways has been demonstrated and is important during tumorigenesis and DNA damage, where deregulation of beta catenin activates p53. In this study, we used estrogen treatment of osteoblasts as a paradigm to study the relationship between the two proteins during osteoblast differentiation.

Results: We exposed osteoblast-like ROS17/2.8 cells to 17-beta estradiol (E2), in a short term assay, and studied the cellular distribution and expression of beta-catenin. We found beta-catenin to be up regulated several fold following E2 treatment. Levels of p53 and its functional activity mirrored the quantitative changes seen in beta-catenin. Alkaline phosphatase, an early marker of osteoblast differentiation, was increased in a manner similar to beta-catenin and p53. In order to determine if there was a direct relationship between alkaline phosphatase expression and beta-catenin, we used two different approaches. In the first approach, treatment with LiCl, which is known to activate beta-catenin, caused a several fold increase in alkaline phosphatase activity. In the second approach, transient transfection of wild type beta-catenin into osteoblasts increased alkaline phosphatase activity two fold over basal levels, showing that beta catenin expression can directly affect alkaline phosphatase expression. However increase in beta catenin activity was not associated with an increase in its signaling activity through TCF/LEF mediated transcription. Immunofluorescence analyses of p53 and beta-catenin localization showed that E2 first caused an increase in cytosolic beta-catenin followed by the accumulation of beta-catenin in the nucleus. Nuclear p53 localization was detected in several cells. Expression of p53 was accompanied by distribution of beta-catenin to the cytoplasm and cell borders. A sub population of cells staining strongly for both proteins appeared to be apoptotic.

Conclusion: These results suggest that interactions between p53 and beta-catenin signaling pathways may play a key role in osteoblast differentiation and maintenance of tissue homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1192811PMC
http://dx.doi.org/10.1186/1475-2867-5-24DOI Listing

Publication Analysis

Top Keywords

alkaline phosphatase
20
p53 beta-catenin
16
beta-catenin
14
beta catenin
12
p53
10
estrogen treatment
8
treatment osteoblasts
8
expression beta-catenin
8
osteoblast differentiation
8
phosphatase expression
8

Similar Publications

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Aim: Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.

Methodology: Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs.

View Article and Find Full Text PDF

Osteoporosis (OP) is a common clinical bone disease that can cause a high incidence of non-stress fractures and is one of the main degenerative diseases that endangers the health and life of middle-aged and older women. The mechanism underlying the abnormal differentiation and function of human bone marrow stem cells (hBMSCs) remains to be elucidated. Cell proliferation and differentiation were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, alkaline phosphatase (ALP) staining, and Alizarin Red Staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!