Starpharma focuses on the use of dendrimers as drugs in their own right, in contrast to dendrimers as drug delivery vehicles or diagnostics. This contextual review describes how dendrimers offer a unique platform for exploring chemical diversity on the nanoscale and how the production of dendrimer libraries covering a diverse array of macromolecular structures can be used in drug discovery and development. Using Starpharma's work on the prevention of HIV and sexually transmitted infections (STIs) through the development of microbicide candidates as an example, the process from which SPL7013 emerged as a development candidate is described. Following a range of preclinical studies, Starpharma submitted an investigational new drug application (IND) for SPL7013 gel (VivaGel) to the United States Food and Drug Administration (FDA) in June 2003, the first such submission for a dendrimer-based drug. The first clinical trial under this IND was completed in 2004.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp050023qDOI Listing

Publication Analysis

Top Keywords

dendrimers drugs
8
drug
5
dendrimers
4
drugs discovery
4
discovery preclinical
4
preclinical clinical
4
development
4
clinical development
4
development dendrimer-based
4
dendrimer-based microbicides
4

Similar Publications

Alzheimer's disease (AD) is an irreversible brain disorder that led to memory loss and disrupts daily life. Earlier strategies to treat AD such as acetylcholinesterase inhibitor (AChEI) drugs are not showing effectiveness due to the inability to cross the blood-brain barrier. Moreover, traditional AChEI provides limited efficacy in terms of bioavailability and solubility for treating AD treatment.

View Article and Find Full Text PDF

Background: The multi-biological barriers present in the inflammatory microenvironment severely limit the targeted aggregation of anti-inflammatory drugs in the lesion area. However, conventional responsive drug carriers inevitably come into contact with several pro-responsive stimulatory mediators simultaneously, leading to premature drug release and loss of most therapeutic effects. Breaking through the multi-level barriers of the inflammatory microenvironment is essential to improve the enrichment and bioavailability of drugs.

View Article and Find Full Text PDF

Effective inhibition of dengue virus replication using 3'UTR-targeted Vivo-Morpholinos.

Front Immunol

December 2024

State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China.

Introduction: Due to the impact of antibody-dependent enhancement and viral variation, effective vaccines or antiviral therapies remain lacking for the dengue virus (DENV). Nucleic acid drugs, particularly Vivo-Morpholinos (MOs), have emerged as a promising avenue for antiviral treatment due to their programmability and precise targeting, as well as their safety and stability.

Method: In this study, we designed and developed 10 morpho-modified (octa-guanidine dendrimer) vivo-MO molecules that target each coding gene of DENV.

View Article and Find Full Text PDF

Phytochemicals as dietary components are being extensively explored in order to prevent and treat a wide range of diseases. Apigenin is among the most studied flavonoids found in significant amount in fruits (oranges), vegetables (celery, parsley, onions), plant-based beverages (beer, tea, wine) and herbs (thyme, chamomile, basil, oregano) that has recently gained interest due to its promising pharmacological effects. However, the poor solubility and extended first pass metabolism of apigenin limits its clinical use.

View Article and Find Full Text PDF

Mitochondria are the seat of cellular energy and play key roles in regulating several cellular processes such as oxidative phosphorylation, respiration, calcium homeostasis and apoptotic pathways. Mitochondrial dysfunction results in error in oxidative phosphorylation, redox imbalance, mitochondrial DNA mutations, and disturbances in mitochondrial dynamics, all of which can lead to several metabolic and degenerative diseases. A plethora of studies have provided evidence for the involvement of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!