Objective: Joint injury in young adults leads to an increased risk of developing osteoarthritis (OA) later in life. This study was undertaken to determine if injurious mechanical compression of cartilage explants results in changes at the level of gene transcription that may lead to subsequent degradation of the cartilage.

Methods: Cartilage was explanted from the femoropatellar groove of newborn calves. Levels of messenger RNA encoding matrix molecules, proteases, their natural inhibitors, transcription factors, and cytokines were assessed in free swelling control cultures as compared with cartilage cultures at 1, 2, 4, 6, 12, and 24 hours after application of a single injurious compression.

Results: Gene-expression levels measured in noninjured, free swelling cartilage varied over 5 orders of magnitude. Matrix molecules were the most highly expressed of the genes tested, while cytokines, matrix metalloproteinases (MMPs), aggrecanases (ADAMTS-5), and transcription factors showed lower expression levels. Matrix molecules showed little change in expression after injurious compression, whereas MMP-3 increased approximately 250-fold, ADAMTS-5 increased approximately 40-fold, and tissue inhibitor of metalloproteinases 1 increased approximately 12-fold above the levels in free swelling cultures. Genes typically used as internal controls, GAPDH and beta-actin, increased expression levels approximately 4-fold after injury, making them unsuitable for use as normalization genes in this study. The expression levels of tumor necrosis factor alpha and interleukin-1beta, cytokines known to be involved in the progression of OA, did not change in the chondrocytes after injury.

Conclusion: Changes in the level of gene expression after mechanical injury are gene specific and time dependent. The quantity of specific proteins may be altered as a result of these changes in gene expression, which may eventually lead to degradation at the tissue level and cause a compromise in cartilage structure and function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.21215DOI Listing

Publication Analysis

Top Keywords

gene expression
12
matrix molecules
12
free swelling
12
expression levels
12
mechanical injury
8
cartilage explants
8
changes level
8
level gene
8
transcription factors
8
expression
7

Similar Publications

Predicting transcriptional changes induced by molecules with MiTCP.

Brief Bioinform

November 2024

Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.

Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction.

View Article and Find Full Text PDF

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Pig production is an agricultural sector of great economic and social relevance to Brazil and global markets. Feed efficiency traits directly influence the sustainability of pig production due to the economic impact of feed costs on the production system and the environmental footprint of the industry. Therefore, breeding for improved feed efficiency has been a target of worldwide pig breeding programs.

View Article and Find Full Text PDF

Background: Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD.

Methods: We conducted a pilot randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (estimated glomerular filtration rate [eGFR] <60mL/min/1.

View Article and Find Full Text PDF

Objective: This study aims to explore the role of exosome-related genes in breast cancer (BRCA) metastasis by integrating RNA-seq and single-cell RNA-seq (scRNA-seq) data from BRCA samples and to develop a reliable prognostic model.

Methods: Initially, a comprehensive analysis was conducted on exosome-related genes from the BRCA cohort in The Cancer Genome Atlas (TCGA) database. Three prognostic genes (JUP, CAPZA1 and ARVCF) were identified through univariate Cox regression and Lasso-Cox regression analyses, and a metastasis-related risk score model was established based on these genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!