Streptoccocus pneumoniae infection can result in local and systemic diseases such as otitis media, pneumonia and meningitis. Sensorineural hearing loss associated with this infection is mediated by the release of an exotoxin, pneumolysin. The goal of the present study was to characterize the mechanisms of pneumolysin toxicity in cochlear hair cells in vitro. Pneumolysin induced severe damage in cochlear hair cells, ranging from stereocilia disorganization to total cell loss. Surprisingly, pneumolysin-induced cell death preferentially targeted inner hair cells. Pneumolysin triggered in vitro cell death by an influx of calcium. Extracellular calcium appeared to enter the cell through a pore formed by the toxin. Buffering intracellular calcium with BAPTA improved hair cell survival. The mitochondrial apoptotic pathway involved in pneumolysin-induced cell death was demonstrated by the use of bongkrekic acid. Binding of pneumolysin to the hair cell plasma membrane was required to induce cell death. Increasing external calcium reduced cell toxicity by preventing the binding of pneumolysin to hair cell membranes. These results showed the significant role of calcium both in triggering pneumolysin-induced hair cell apoptosis and in preventing the toxin from binding to its cellular target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474774 | PMC |
http://dx.doi.org/10.1113/jphysiol.2005.092478 | DOI Listing |
Heliyon
January 2025
Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China.
Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs).
View Article and Find Full Text PDFBiomater Res
January 2025
Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.
View Article and Find Full Text PDFBiomater Res
January 2025
Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
Cell Struct Funct
January 2025
College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University.
The process of mammalian myogenesis is fundamental to understanding muscle development and holds broad relevance across multiple fields, from developmental biology to regenerative medicine. This review highlights two key aspects: myoblast proliferation and the role of cilia in this process. Myoblasts, as muscle precursor cells, must undergo tightly regulated cycles of proliferation and differentiation to ensure proper muscle growth and function.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!