A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GSK-3beta inhibitors reduce protein degradation in muscles from septic rats and in dexamethasone-treated myotubes. | LitMetric

GSK-3beta inhibitors reduce protein degradation in muscles from septic rats and in dexamethasone-treated myotubes.

Int J Biochem Cell Biol

Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue ST919, Boston, MA 02215, USA.

Published: October 2005

Sepsis is associated with muscle wasting, mainly reflecting increased muscle proteolysis. Recent studies suggest that inhibition of GSK-3beta activity may counteract catabolic stimuli in skeletal muscle. We tested the hypothesis that treatment of muscles from septic rats with the GSK-3beta inhibitors LiCl and TDZD-8 would reduce sepsis-induced muscle proteolysis. Because muscle wasting during sepsis is, at least in part, mediated by glucocorticoids, we also tested the effects of GSK-3beta inhibitors on protein degradation in dexamethasone-treated cultured myotubes. Treatment of incubated extensor digitorum longus muscles with LiCl or TDZD-8 reduced basal and sepsis-induced protein breakdown rates. When cultured myotubes were treated with LiCl or one of the GSK-3beta inhibitors SB216763 or SB415286, protein degradation was reduced. Treatment of incubated muscles or cultured myotubes with LiCl, but not the other GSK-3beta inhibitors, resulted in increased phosphorylation of GSK-3beta at Ser9, consistent with inactivation of the kinase and suggesting that the other inhibitors used in the present experiments inhibit GSK-3beta by phosphorylation-independent mechanisms. The present results suggest that GSK-3beta inhibitors may be used to prevent or treat sepsis-induced, glucocorticoid-regulated muscle proteolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2005.06.002DOI Listing

Publication Analysis

Top Keywords

gsk-3beta inhibitors
24
protein degradation
12
muscle proteolysis
12
cultured myotubes
12
gsk-3beta
9
muscles septic
8
septic rats
8
muscle wasting
8
licl tdzd-8
8
treatment incubated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!