We herein report the development of a recombinant bacterial biosensor for the rapid and easy detection of phenolic compounds in the field. A plasmid was designed to encode a beta-galactosidase reporter gene under the control of capR, an activator involved in phenolic compound degradation. The construct was transformed into Escherichia coli, and transformed cells were stored after being freeze-dried in the presence of sucrose. For detection of phenolic compounds, the cells were rehydrated, and used instantly, without any growth step. In the presence of 0.1 microM-10mM phenol, we observed a red color from hydrolysis of chlorophenol red beta-D-galactopyranoside (CPRG) or an indigo color from hydrolysis of X-galactopyranoside (X-gal). Other phenolic compounds could be detected by this system, including catechol, 2-methylphenol, 2-chlorophenol, 3-methylphenol, 2-nitrophenol, and 4-chlorophenol. These results suggest that this novel bacteria biosensor may be useful for easy, on-site detection of phenolic compounds without the need for unwieldy equipment or sample pretreatment. Indeed, biosensor systems involving beta-galactosidase-expressing freeze-dried recombinant bacteria could prove useful for the in situ detection of many more compounds in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2005.06.002 | DOI Listing |
3 Biotech
February 2025
Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University Kanpur, Kanpur, Uttar Pradesh India.
Tuberculosis (TB) is one of the leading causes of death in the world, despite being a preventable and curable disease. Irrespective of tremendous advancements in early detection and treatment, this disease still has high mortality rates. This is due to the development of antibiotic resistance, which significantly reduced the efficacy of antibiotics, rendering them useless against this bacterial infection.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States.
Oleuropein is a phenolic compound commonly found in cosmetic ingredients including olive leaves and jasmine flowers with various skin-beneficial effects. Here, we evaluated oleuropein's anti-inflammatory and antioxidant activities in human skin cells. In a cell-based inflammasome model with human monocytes (THP-1 cells), oleuropein (12-200 µM) reduced proinflammatory cytokine interleukin (IL)-6 by 38.
View Article and Find Full Text PDFScientificWorldJournal
January 2025
Department of Biology, College of Science, Bahir Dar University, P. O. Box 79, Bahir Dar, Ethiopia.
The present study was aimed to verify the medicinal value of and traditionally used to treat human and animal ailments in Ethiopia. Fresh leaves of these species were collected, dried under shade, and ground into fine powder. The extraction was carried out by the maceration method using methanol as a solvent.
View Article and Find Full Text PDFSe Pu
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.
View Article and Find Full Text PDFRecent Adv Food Nutr Agric
January 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144402, India.
Despite notable progress in treatment modalities, cancer continues to be a prom-inent cause of death globally. Chemotherapy is the main method used to treat cancer, and chemotherapeutic medications are categorized according to how they work. Nevertheless, the issue of multidrug resistance (MDR) is a significant obstacle, impacting almost 90% of cancer patients who receive chemotherapy or innovative targeted medicines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!