Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Na v 1.8 sodium channels expressed in Xenopus oocytes.

Toxicol Appl Pharmacol

Department of Entomology, New York State Agricultural Experiment Station, Cornell University, P. O. Box 462, Geneva, NY 14456, USA.

Published: March 2006

Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na v 1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed with kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na v 1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na v 1.8 sodium channels from the perspective of either resting or use-dependent modification. When use dependence is taken into account, cypermethrin, deltamethrin and tefluthrin approached the effectiveness of fenpropathrin. The selective expression of Na v 1.8 sodium channels in nociceptive neurons suggests that these channels may be important targets for pyrethroids in the production of paresthesia following dermal exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2005.06.022DOI Listing

Publication Analysis

Top Keywords

sodium channels
20
pyrethroid insecticides
12
cyfluthrin cyhalothrin
12
cypermethrin deltamethrin
12
channels
9
insecticides rat
8
sodium
8
rat sodium
8
expressed xenopus
8
tail currents
8

Similar Publications

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.

View Article and Find Full Text PDF

Background: Allergic rhinitis (AR) is a common cause of chronic cough, linked to dysregulated airway C- and Aδ-fibres through inflammatory mediators. Despite the limited efficacy of current antitussive therapies, recent studies show that the Na1.7 inhibitor can block cough in naïve guinea pigs.

View Article and Find Full Text PDF

Introduction: Hypoalgesic inflammatory bowel disease (IBD) may provide critical insights into human abdominal pain. This condition was previously associated with homozygosity for a polymorphism (rs6795970, A1073V; 1073 val/val ) related to Na v 1.8, a voltage-gated sodium channel preferentially expressed on nociceptors.

View Article and Find Full Text PDF

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!