Synthetic noncrystalline aluminosilicates with variable charge, similar to allophanes present naturally in volcanic soils, were studied. The surface charge behavior was determined by zero point charge (ZPC) measured by electrophoretic mobility (isoelectric points, IEP) and determined by potentiometric titration (point of zero salt effect, PZSE). The ZPC calculated by Parks model (ZPC(c)), compared with IEP values, showed that the aluminosilicate (AlSi) surface was slightly enriched by AlOH (34% Al(2)O(3) and 66% SiO(2)) compared with the bulk composition (29% Al(2)O(3) and 71% SiO(2)). For aluminosilicate coated with iron oxide (AlSiFe) the ZPC(c) (4.4) was lower than the IEP (8.46), showing that the surface composition is formed mainly from iron oxide. The PZSE values for AlSi and AlSiFe were 6.2 and 4.8, respectively. The differences between the IEP and PZSE are attributed to the formation of Si-O-Fe or Si-O-Al bonds; therefore, the reactivity of Fe and Al atoms was modified on the surface. Two mechanistic models, the constant capacitance model (CCM) and the triple layer model (TLM), using the program FITEQL 3.2 were able to describe the surface behavior of both synthetic aluminosilicates. The acidity constants determined using both models for the aluminosilicates showed differences with respect to pure oxide, mainly attributed to the presence of SiOH sites on the internal surfaces. The ionic strength showed a good relation with the parameters obtained using the CCM (pK(int)(a1), pK(int)(a2) and capacitance values) and the TLM (pK(int)(a1), pK(int)(a2), pK(int)(Cl-), pK(int)(K+), and inner capacitance) for both aluminosilicates. However, the TLM was able to describe the acidity and complexation constants better since it considered the formation of the outer sphere complex between the background electrolyte and the surface. Then, the TLM makes it possible to describe real systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2005.05.083 | DOI Listing |
Pharm Res
January 2025
Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, 110016, China.
Purpose: Tylvalosin Tartrate (TAT), a new-generation macrolide antibiotic, undergoes significant degradation in the stomach and in vivo rapid elimination upon oral administration, resulting in poor bioavailability. This study developed TAT enteric amorphous pellets by liquid layering (TAT/EAP-LL) with pH-sensitive and burst release characteristics, to enhance drug stability in the stomach and concentration enrichment in the duodenum.
Methods: The drug loading layer, isolation layer and enteric layer were formed on the surface of the blank core pellets.
Sci Rep
January 2025
Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.
In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
In the field of organic electronics and optics, there is rapidly growing interest in enhancing both charge transport and the ion transport properties of semiconductors, particularly in light of recent emerging technologies such as organic electrochemical transistors (OECTs) and switchable organic nanoantennas. Herein, we propose a universal method for internalizing the ionic transport properties of conventional polymer semiconductors. The incorporation of a tetrafluorophenyl azide-based photochemical cross-linker with a tetraethylene glycol bridge into poly(3-hexylthiophene) (P3HT) significantly enhances the performance and operational stability of ion-gating devices.
View Article and Find Full Text PDFInt J Pharm
January 2025
University of Applied Sciences and Arts Northwest. Switzerland, School of Life Sciences, Institute of Pharma Technology, Hofackerstr. 30 CH-4132 Muttenz, Switzerland. Electronic address:
In recent years, deep eutectic solvents (DESs) with their outstanding solubilization properties have emerged as strong candidates for oral enabling formulations of poorly soluble drugs. This study explores the use of drug-based therapeutic DESs (THEDESs) to solubilize a poorly soluble compound with the aim of providing a fixed-dose combination of two complementary therapeutic agents. Specifically, potential anticancer effects of ibuprofen (IBU) are harnessed in a novel type of THEDES to dissolve higher amounts of abiraterone acetate (AbAc), an antitumor agent.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801.
Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!