Display of somatostatin-related peptides in the complementarity determining regions of an antibody light chain.

Arch Biochem Biophys

Department of Immunotherapeutics, Purdue Pharma L.P., 6 Cedar Brook Drive, Cranbury, NJ 08512, USA.

Published: August 2005

Peptide display in antibody complementarity determining regions (CDRs) offers several advantages over other peptide display systems including the potential to graft heterologous peptide sequences into multiple positions in the same backbone molecule. Despite the presence of six CDRs in an antibody variable domain, the majority of insertions reported have been made in heavy chain CDR3 (h-CDR3) which may be explained in part by the highly variable length and sequence diversity found in h-CDR3 in native antibodies. The ability to graft peptide sequences into CDRs is restricted by amino acids in these loops that make structural contacts to framework regions or are oriented towards the hydrophobic interior and are important for the proper folding of the antibody. To identify such positions in human kappa-light chain CDR1 (kappa-CDR1) and CDR2 (kappa-CDR2), we performed alignments of 1330 kappa-light chain variable region amino acid sequences and 19 variable region X-ray crystal structures. From analyses of these alignments, we predict insertion points where sequences can be grafted into kappa-CDR1 and kappa-CDR2 to prepare synthetic antibody molecules. We then tested these predictions by inserting somatostatin and somatostatin-related sequences into kappa-CDR1 and kappa-CDR2, and analyzing the expression and ability of the modified antibodies to bind to membranes containing somatostatin receptor 5. These results expand the repertoire of CDRs that can be used for the display of heterologous peptides in the CDRs of antibodies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2005.06.009DOI Listing

Publication Analysis

Top Keywords

complementarity determining
8
determining regions
8
peptide display
8
peptide sequences
8
kappa-light chain
8
variable region
8
kappa-cdr1 kappa-cdr2
8
antibody
5
cdrs
5
sequences
5

Similar Publications

Deciphering the endogenous SUMO-1 landscape: a novel combinatorial peptide enrichment strategy for global profiling and disease association.

Chem Sci

December 2024

State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China

Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.

View Article and Find Full Text PDF

Noncoding small RNAs are essential for modulating bacterial gene expression, especially under carbon and nutrient-limited conditions. In this study, by employing both in silico and molecular hybridization tools, we identified a carbon source responsive small RNA in A. baumannii DS002.

View Article and Find Full Text PDF

Multi-Gene Panel for Thrombophilia Testing in Venous Thromboembolism.

J Thromb Haemost

January 2025

Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.

Background: Conventional tests for inherited thrombophilia focus on the five most-established inherited thrombophilias; i.e. deficiencies in antithrombin, protein C, and protein S, and the factor V Leiden and prothrombin G20210A variants.

View Article and Find Full Text PDF

Cryo-EM structure and complementary drug efflux activity of the Acinetobacter baumannii multidrug efflux pump AdeG.

Structure

December 2024

Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China; The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:

Multidrug-resistant Acinetobacter baumannii has emerged as one of the most antibiotic-resistant bacterial pathogens associated with nosocomial infection, with its resistance highly depending on multiple multidrug efflux pumps. Here, we report the cryoelectron microscopy (cryo-EM) structure of Acinetobacter drug efflux G (AdeG), the inner membrane component of one of three important resistance-nodulation-cell division (RND) pump family members in A. baumannii, which is involved in drug resistance to chloramphenicol, trimethoprim, ciprofloxacin, and clindamycin.

View Article and Find Full Text PDF

(1) Background: Electrostatics plays a capital role in protein-protein and protein-ligand interactions. Implicit solvent models are widely used to describe electrostatics and complementarity at interfaces. Electrostatic complementarity at the interface is not trivial, involving surface potentials rather than the charges of surfacial contacting atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!