Immunologic disorders in neonatal foals.

Vet Clin North Am Equine Pract

Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Southwest 16th Avenue, Gainesville, FL 32610, USA.

Published: August 2005

Foals live in an environment heavily populated by bacteria, many of which are capable of causing disease. Development of infection,however, is the exception rather than the rule. The ability of the foal to prevent infection by most pathogens is the result of a sophisticated set of defense mechanisms. These defense mechanisms can be divided into adaptive and innate immunity. Innate immunity encompasses defense mechanisms that pre-exist or are rapidly induced within hours of exposure to a pathogen. Conversely, adaptive or acquired immunity represents host defenses mediated by T and B lymphocytes, each expressing a highly specific antigen receptor and exhibiting memory during a second encounter with a given antigen. Immunologic disorders are relatively common in foals compared with their occurrence in adult horses. This article summarizes the current understanding of the equine fetal and neonatal immune system and reviews common immunodeficiency disorders as well as disorders resulting from allogenic incompatibilities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cveq.2005.04.004DOI Listing

Publication Analysis

Top Keywords

defense mechanisms
12
immunologic disorders
8
innate immunity
8
disorders neonatal
4
neonatal foals
4
foals foals
4
foals live
4
live environment
4
environment heavily
4
heavily populated
4

Similar Publications

Defense guard: strategies of plants in the fight against Cadmium stress.

Adv Biotechnol (Singap)

December 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.

Soil Cadmium (Cd) contamination is a worldwide problem with negative impacts on human health. Cultivating the Cd-Pollution Safety Cultivar (Cd-PSC) with lower Cd accumulation in edible parts of plants is an environmentally friendly approach to ensure food security with wide application prospects. Specialized mechanisms have been addressed for Cd accumulation in crops.

View Article and Find Full Text PDF

Publisher Correction: Mechanisms underlying the interactions and adaptability of nitrogen removal microorganisms in freshwater sediments.

Adv Biotechnol (Singap)

July 2024

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.

View Article and Find Full Text PDF

Mechanisms underlying the interactions and adaptability of nitrogen removal microorganisms in freshwater sediments.

Adv Biotechnol (Singap)

June 2024

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.

Microorganisms in eutrophic water play a vital role in nitrogen (N) removal, which contributes significantly to the nutrient cycling and sustainability of eutrophic ecosystems. However, the mechanisms underlying the interactions and adaptation strategies of the N removal microorganisms in eutrophic ecosystems remain unclear. We thus analyzed field sediments collected from a eutrophic freshwater ecosystem, enriched the N removal microorganisms, examined their function and adaptability through amplicon, metagenome and metatranscriptome sequencing.

View Article and Find Full Text PDF

From trade-off to synergy: how nutrient status modulates plant resistance to herbivorous insects?

Adv Biotechnol (Singap)

October 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.

The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.

View Article and Find Full Text PDF

The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!