Mathematical modelling of the light response curve of photoinhibition of photosystem II.

Photosynth Res

Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku, 20014 Turku, Finland.

Published: June 2005

The light response curves of the acceptor and donor side mechanisms of photoinhibition of Photosystem II were calculated, using Arabidopsis as a model organism. Acceptor-side photoinhibition was modelled as double reduction of QA, noting that non-photochemical quenching has the same effect on the quantum yield of QA double reduction in closed PSII centres as it has on the quantum yield of electron transport in open centres. The light response curve of acceptor-side photoinhibition in Arabidopsis shows very low efficiency under low intensity light and a relatively constant quantum yield above light saturation of photosynthesis. To calculate the light response curve of donor-side photoinhibition, we built a model describing the concentration of the oxidized primary donor P680 + during steady-state photosynthesis. The model is based on literature values of rate constants of electron transfer reactions of PSII, and it was fitted with fluorescence parameters measured in the steady state. The modelling analysis showed that the quantum yield of donor-side photoinhibition peaks under moderate light. The deviation of the acceptor and donor side mechanisms from the direct proportionality between photoinhibition and photon flux density suggests that these mechanisms cannot solely account for photoinhibition in vivo, but contribution of a reaction whose quantum yield is independent of light intensity is needed. Furthermore, a simple kinetic calculation suggests that the acceptor-side mechanism may not explain singlet oxygen production by photoinhibited leaves. The theoretical framework described here can be used to estimate the yields of different photoinhibition mechanisms under different wavelengths or light intensities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-004-7174-xDOI Listing

Publication Analysis

Top Keywords

quantum yield
20
light response
16
response curve
12
light
9
photoinhibition
9
photoinhibition photosystem
8
acceptor donor
8
donor side
8
side mechanisms
8
acceptor-side photoinhibition
8

Similar Publications

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Exploring Lysine Incorporation as a Strategy to Mitigate Postsynthetic Halide Exchange in Lead-Halide Hybrid Perovskites.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.

View Article and Find Full Text PDF

Achieving multicolor emission is a fascinating goal that remains challenging for zero-dimensional (0D) hybrid halides. We successfully obtained a three-millimeter-scale 0D (MXDA)CdBr (MXDA = CHN) single crystal (SC) by the solvothermal method. It serves as an outstanding host for doping with various valence activators, such as Cu, Mn and Sb, and these doped single crystals emit blue (470 nm), yellow (580 nm) and red (618 nm) fluorescence, which accurately cover a large visible region and achieve efficient multicolor emission.

View Article and Find Full Text PDF

We synthesized and investigated a new series of Sm 1,3-diketonate complexes with CF-homologous thiophene-containing ligands. A clear correlation was found between the number of fluorine atoms in the 1,3-diketone's carbon chain and the luminescent properties of the samarium(III) complexes. The ligand modification method employed facilitates targeted and significant enhancements in the photoluminescence quantum yield (PLQY).

View Article and Find Full Text PDF

The incorporation of Sb ions into all-inorganic halide lead-free perovskites bestows them with remarkable photoluminescence characteristics, including an extensive color tuning range, elevated photoluminescence quantum yield (PLQY), and reversible color transitions, which hold significant promise for applications in light-emitting diodes, anti-counterfeiting encryption technologies, and photodetectors. Sb ions not only create new optical absorption channels but also can be integrated into these materials as activators or sensitizers to modulate the bandgap and band structure. This review focuses on the optical properties of Sb ion-doped lead-free halide perovskites while examining potential energy transfer pathways across various doping systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!