Constitutive inactivation of the hKv1.5 mutant channel, H463G, in K+-free solutions at physiological pH.

Cell Biochem Biophys

Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, Canada.

Published: October 2005

Extracellular acidification and reduction of extracellular K(+) are known to decrease the currents of some voltage-gated potassium channels. Although the macroscopic conductance of WT hKv1.5 channels is not very sensitive to [K(+)](o) at pH 7.4, it is very sensitive to [K(+)](o) at pH 6.4, and in the mutant, H463G, the removal of K(+)(o) virtually eliminates the current at pH 7.4. We investigated the mechanism of current regulation by K(+)(o) in the Kv1.5 H463G mutant channel at pH 7.4 and the wild-type channel at pH 6.4 by taking advantage of Na(+) permeation through inactivated channels. Although the H463G currents were abolished in zero [K(+)](o), robust Na(+) tail currents through inactivated channels were observed. The appearance of H463G Na(+) currents with a slow rising phase on repolarization after a very brief depolarization (2 ms) suggests that channels could activate directly from closed-inactivated states. In wild-type channels, when intracellular K(+) was replaced by NMG(+) and the inward Na(+) current was recorded, addition of 1 mM K(+) prevented inactivation, but changing pH from 7.4 to 6.4 reversed this action. The data support the idea that C-type inactivation mediated at R487 in Kv1.5 channels is influenced by H463 in the outer pore. We conclude that both acidification and reduction of [K(+)](o) inhibit Kv1.5 channels through a common mechanism (i.e., by increasing channel inactivation, which occurs in the resting state or develops very rapidly after activation).

Download full-text PDF

Source
http://dx.doi.org/10.1385/CBB:43:2:221DOI Listing

Publication Analysis

Top Keywords

mutant channel
8
acidification reduction
8
channels
8
sensitive [k+]o
8
inactivated channels
8
kv15 channels
8
h463g
5
constitutive inactivation
4
inactivation hkv15
4
hkv15 mutant
4

Similar Publications

In the spore-forming bacterium Bacillus subtilis transcription and translation are uncoupled and the translational machinery is located at the cell poles. During sporulation, the cell undergoes morphological changes including asymmetric division and chromosome translocation into the forespore. However, the fate of translational machinery during sporulation has not been described.

View Article and Find Full Text PDF

Molecular basis of proton sensing by G protein-coupled receptors.

Cell

December 2024

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:

Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder marked by progressive memory loss and cognitive decline. The precise molecular mechanisms underlying AD pathogenesis remain uncertain, underscoring the need for further investigation to identify novel therapeutic targets. We recently demonstrated that mitochondrial calcium (Ca) overload significantly contributes to the development of AD, capable of independently driving AD-like pathology.

View Article and Find Full Text PDF

For the protozoan parasite Leishmania, completion of its life cycle requires sequential adaptation of cellular physiology and nutrient scavenging mechanisms to the different environments of a sand fly alimentary tract and the acidic mammalian host cell phagolysosome. Transmembrane transporters are the gatekeepers of intracellular environments, controlling the flux of solutes and ions across membranes. To discover which transporters are vital for survival as intracellular amastigote forms, we carried out a systematic loss-of-function screen of the L.

View Article and Find Full Text PDF

Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!