Activation of group I metabotropic glutamate receptors (mGluRs) elicits persistent ictaform discharges in guinea pig hippocampal slices, providing an in vitro model of epileptogenesis. The induction of these persistent ictaform bursts is prevented by l-cysteine sulfinic acid (CSA), an agonist at phospholipase D (PLD)-coupled mGluRs. Studies described herein examined the role of protein kinase C (PKC) in both the group I mGluR-mediated induction and CSA-mediated suppression of this form of epileptogenesis. Intracellular recordings were performed from CA3 stratum pyramidale and synchronized burst length was monitored. In the presence of 50 microM picrotoxin, a gamma-aminobutyric acid type A antagonist, 250- to 500-ms synchronized bursts were elicited. (S)-3,5-Dihydroxyphenylglycine (DHPG, 50 microM), an agonist at group I mGluRs, increased the burst length to 1-3 s in duration, a change that persisted after agonist washout. This persistent change in burst length was elicited in the presence of 10 microM chelerythrine, a PKC inhibitor, indicating that DHPG-induced epileptogenesis is PKC independent. However, although PLD activation with CSA (100 microM) was highly effective at suppressing group I mGluR-mediated induction of burst prolongation, CSA application in the presence of chelerythrine was no longer effective and resulted in the expression of persistent ictaform bursts. These data suggest that CSA-mediated suppression of group I mGluR-induced epileptogenesis is PKC dependent. We propose that CSA mediates its effect by PLD-driven activation of PKC, which may desensitize the phospholipase C-linked group I mGluRs and thereby prevent group I mGluR-induced epileptogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00548.2005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!