We suggest a novel approach to enhancing antimicrobial drug action by utilizing engineered peptide conjugates. Our most potent conjugates, [fMLF]PMBN and [fMLF]PMEN, are nonapeptides derived from polymyxin B's (PMB's) cyclic moiety (Thr-Dab-cyclo[Dab-Dab-d-Phe-Leu-Dab-Dab-Thr], where Dab is 2,4-diaminobutyric acid) and polymyxin E's (PME's) cyclic moiety (Thr-Dab-cyclo[Dab-Dab-d-Leu-Leu-Dab-Dab-Thr]), respectively, attached to a linear tail comprised of formyl-Met-Leu-Phe (fMLF). The cyclic part binds to gram-negative lipopolysaccharides, rendering the bacterial outer membrane permeable to hydrophobic antibiotics. The tail confers chemotactic and opsonic activities upon the conjugates. These two activities appear to be the basis for the conjugates' antibacterial activities. The conjugates are 8 to 10 times less toxic than the parent PMB or PME antibiotics. Fourteen of 18 mice lethally challenged with erythromycin-resistant Klebsiella pneumoniae survived following intraperitoneal administration of erythromycin and [fMLF]PMBN, whereas erythromycin or the peptide conjugate alone had no effect. Moreover, the clearance of Klebsiella from blood was markedly enhanced by intravenous injection of the [fMLF]PMEN peptide conjugate compared to the clearance of the organism from the mice treated with buffer alone as a control and was similar to that achieved by the PME antibiotic. Blood clearance was also significantly enhanced by administration of PMEN either alone or in a mixture with fMLF, although the effect was less than that produced by the peptide conjugate. Since resistance to polymyxins, the parent molecules of the synthetic cyclic peptides, is rare, the emergence of bacteria resistant to the antimicrobial properties of the peptide conjugates may be precluded as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196242 | PMC |
http://dx.doi.org/10.1128/AAC.49.8.3122-3128.2005 | DOI Listing |
Drug Deliv Transl Res
January 2025
Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.
View Article and Find Full Text PDFBioorg Chem
December 2024
Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:
Membranes that destroy anticancer peptides can bind to negatively charged cancer cell membranes through electrostatic interactions, destroying their functions and leading to cancer cell necrosis. Temporin-1CEa, obtained from the skin secretions of the Chinese frog Rana chensinensis, is an anticancer peptide with 17 amino acid residues that exhibits concentration-dependent cytotoxicity against a variety of cancer cell lines, although it has no obvious cytotoxicity to normal HUVECs. In this work, we designed and synthesized 12 derivative peptides through double-cysteine scanning of temporin-1CEa-truncated peptides.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most prevalent form of late-life dementia. The ε2 allele of the APOE gene encoding apolipoprotein E (APOE2) is associated with lower susceptibility to AD among the three genotypes (ε2, ε3, ε4), while APOE4 is the strongest genetic risk factor for late-onset AD. APOE plays a critical role in maintaining synaptic plasticity and neuronal function by controlling lipid homeostasis, with APOE2 having a superior function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of British Columbia, Vancouver, BC, Canada.
Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.
Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.
Alzheimers Dement
December 2024
Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
Background: Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aβ). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease (PD), and Dementia with Lewy Bodies (DLB), but less so in Alzheimer's Disease (AD) despite the fact that synuclein pathology is present in over 50% of postmortem brains of AD patients. We are now expanding on our previous studies which showed positive therapeutic effects of downregulating α-syn in AD mice to understand the overall brain transcriptomic and mechanistic changes induced by treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!