The health effects of exposure to vanadium in fuel-oil ash are not well described at levels ranging from 10 to 500 microg/m(3). As part of a larger occupational epidemiologic study that assessed these effects during the overhaul of a large oil-fired boiler, this study was designed to quantify boilermakers' exposures to fuel-oil ash particles, metals, and welding gases, and to identify determinants of these exposures. Personal exposure measurements were conducted on 18 boilermakers and 11 utility workers (referents) before and during a 3-week overhaul. Ash particles < 10 microm in diameter (PM(10), mg/m(3)) were sampled over full work shifts using a one-stage personal size selective sampler containing a polytetrafluoroethylene filter. Filters were digested using the Parr bomb method and analyzed for the metals vanadium (V), nickel (Ni), iron (Fe), chromium (Cr), cadmium (Cd), lead (Pb), manganese (Mn), and arsenic (As) by inductively coupled plasma mass spectrometry. Nitrogen dioxide (NO(2)) was measured with an Ogawa passive badge-type sampler and ozone (O(3)) with a personal active pump sampler.Time-weighted average (TWA) exposures were significantly higher (p < 0.05) for boilermakers than for utility workers for PM(10) (geometric mean: 0.47 vs. 0.13 mg/m(3)), V (8.9 vs. 1.4 microg/m(3)), Ni (7.4 vs. 1.8 microg/m(3)) and Fe (56.2 vs. 11.2 microg/m(3)). Exposures were affected by overhaul time periods, tasks, and work locations. No significant increases were found for O(3) or NO(2) for boilermakers or utility workers regardless of overhaul period or task group. Fuel-oil ash was a major contributor to boilermakers' exposure to PM(10) and metals. Vanadium concentrations sometimes exceeded the 2003 American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15459620591034529DOI Listing

Publication Analysis

Top Keywords

fuel-oil ash
16
boilermakers utility
12
utility workers
12
oil-fired boiler
8
ash particles
8
metals vanadium
8
ash
5
overhaul
5
exposure
4
exposure fuel-oil
4

Similar Publications

The search for alternative material sources to conventional ones has had a significant impact on the construction sector today, driven by the implementation of sustainable development policies on a global scale. Alternative cementitious materials, such as agricultural industry by-products, have been introduced to ensure the efficient use of renewable natural resources while promoting a balance between the technical and economic aspects of infrastructure projects. This article provides an overview of research conducted on the use of pozzolans derived from agro-industrial by-products, such as rice husk ash (RHA), palm oil fuel ash (POFA), and sugarcane bagasse ash (SCBA), which have a high content of amorphous silica.

View Article and Find Full Text PDF

This work investigated the effects of superabsorbent polymers (SAPs) as pore-forming agent and palm oil fuel ash (POFA) as sand replacement (0-100 % by weight) on the strength, economic feasibility, and CO emissions for lightweight concrete production. The product properties were compared with the traditional aerated concrete (with aluminum powder), which aimed to shed light on the use of SAPs and POFA for manufacturing a more sustainable lightweight concrete. The use of POFA to replace sand increased the cost of production by approximately 1-7% and CO emissions by approximately 3-12 % due primarily to the transportation of the POFA from the oil palm fuel power plant, which could be avoided if produced on site of or near the power plant.

View Article and Find Full Text PDF

Thermal and catalytic pyrolysis of automotive plastic wastes to diesel range fuel.

Heliyon

October 2024

Department of Mechanical, Production and Energy Engineering, Moi University, P.O. Box 3900 -30100, Eldoret, Kenya.

This study investigated the pyrolysis of automotive plastic wastes (APW) for the production of diesel-grade oil products using a modified calcium bentonite clay catalyst. The research aimed to optimize the process for maximum oil yield and diesel range organics yield. The APW was characterized by its chemical composition and physical properties and the optimal temperature and catalyst amount were determined for maximum oil yield and diesel range hydrocarbons.

View Article and Find Full Text PDF

In this study, biocrude was successfully produced by the hydrothermal liquefaction of municipal solid waste collected from the landfill site of Lahore, the capital of Punjab, Pakistan, boasting a population of 12 million and an annual waste collection of 10 million tons. The hydrothermal liquefaction process was performed at reaction parameters of 350 °C and 165 bars with 15 min of residence time. The solid waste was found to have 78 % dry matter, 22 % moisture contents, 22.

View Article and Find Full Text PDF

In a variety of industries, including transportation, agriculture, and manufacturing, diesel engines are often employed. Due of rising prices and environmental concerns, researchers examined whether biodiesels might replace diesel. The current study looks into American Saffron Oil's feasibility as a feedstock for biodiesel production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!