Kinetics of Cu and Zn release from soil particles was studied using two surface soils with a stirred-flow method. Different solution pH, dissolved organic matter (DOM) concentrations, and flow rates were tested in this study. A model for kinetics controlled sorption/desorption reactions between soils and solutions was globally fit to all experimental data simultaneously. Results were compared to a model that assumes local instantaneous equilibrium. We obtained one unique set of model parameters applicable to different pH, dissolved organic carbon (DOC), and flow conditions. We included DOM complexation of copper ions, which decreased their sorption. The effect of pH was included by assuming proton competition with metal ions for binding sites on soil particles. These results provide the basis for developing predictive models for metal release from soil particles to surface waters and soil solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es048554f | DOI Listing |
Environ Res
January 2025
INRAE, University of Montpellier, LBE, Av. des Étangs, 11100 Narbonne, France.
Clarithromycin, a common antibiotic found in domestic wastewater, persists even after treatment and can transfer to soils when treated wastewater (TWW) is used for irrigation. This residual antibiotic may exert selection pressure, promoting the spread of antibiotic resistance. While Predicted No Effect Concentrations (PNECs) are used in liquid media to predict resistance risks, PNEC values for soils, especially for clarithromycin, are lacking.
View Article and Find Full Text PDFSci Rep
January 2025
College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210098, China.
Internal instability of embankment soils under seepage can occur in two distinct ways: suffusion and suffosion. Suffusion involves the removal of fine particles from the matrix without causing significant disturbance to the soil skeleton, while suffosion is characterized by the movement of fine particles accompanied by skeleton collapse or deformation. In terms of dam safety, suffosion poses a greater threat than suffusion.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Science, Australia National University, Canberra, ACT 2600, Australia.
Civil and geotechnical researchers are searching for economical alternatives to replace traditional soil stabilizers such as cement, which have negative impacts on the environment. Chitosan biopolymer has shown its capacity to efficiently minimize soil erosion, reduce hydraulic conductivity, and adsorb heavy metals in soil that is contaminated. This research used unconfined compression strength (UCS) to investigate the impact of chitosan content, long-term strength assessment, acid concentration, and temperature on the improvement of soil strength.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Field implementations of fully underground sensor networks face many practical challenges that have limited their overall adoption. Power management is a commonly cited issue, as operators are required to either repeatedly excavate batteries for recharging or develop complex underground power infrastructures. Prior works have proposed wireless inductive power transfer (IPT) as a potential solution to these power management issues, but misalignment is a persistent issue in IPT systems, particularly in applications involving moving vehicles or obscured (e.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.
To achieve resourceful utilization of dredged sludge, lightweight treatment was performed on sludge from Xunsi River in Wuhan using fly ash, cement, and expanded polystyrene (EPS) particles. Density tests and unconfined compressive strength (UCS) tests were conducted on the composite stabilized sludge lightweight soil to determine the optimal mix ratio for high-quality roadbed fill material with low self-weight and high strength. Subsequently, microstructural tests, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!