Adenoviruses are among the most resistant waterborne pathogens to UV disinfection, yet of the 51 serologically distinct human adenoviruses, only a few have been evaluated for their sensitivities to UV irradiation. Human enteric adenoviruses (Ad40 and Ad41) are difficult to cultivate and reliably assay for infectivity, requiring weeks to obtain cytopathogenic effects (CPE). Inoculated cell cultures often deteriorate before the appearance of distinctive CPE making it difficult to obtain reliable and reproducible data regarding UV inactivation. Adenovirus is a double-stranded DNA virus and produces messenger RNA (mRNA) during replication in host cells. The presence of viral mRNA in host cells is definitive evidence of infection. We recently developed a rapid and reliable cell culture-mRNA RT-PCR assay to detect and quantify adenovirus infectivity. Viral mRNA recovered from cell cultures 5-7 days after infection was purified on oligo-dT latex, treated with DNase, and amplified by RT-PCR using the primers specific for a conserved region of the hexon late mRNA transcript. Treatment of approximately 10(4) Ad41 with different doses of 254 nm germicidal UV radiation resulted in a dose-dependent loss of infectivity. As UV doses were increased from 75 to 200 mJ/cm2, virus survival decreased and no virus infectivity (measured by detectable mRNA) was found at a dose of 225 mJ/cm2 or higher. Our results using the cell culture mRNA RT-PCR assay indicate that Ad41 is more resistant to UV radiation than in a previous study using a conventional cell culture infectivity assay. Results were more similar to those found for Ad 40 using CPE as a measure of infectivity in another previous study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2005.06.013DOI Listing

Publication Analysis

Top Keywords

cell culture
12
inactivation adenovirus
8
culture mrna
8
mrna rt-pcr
8
cell cultures
8
host cells
8
viral mrna
8
rt-pcr assay
8
previous study
8
mrna
7

Similar Publications

The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs).

View Article and Find Full Text PDF

Keratinocytes are the primary component of the epidermis, so maintaining the precise balance between proliferation and differentiation is essential for conserving epidermal structure and function. Rosae multiflorae fructus extract (RMFE) has wide application in the cosmetic industry, but the molecular mechanisms underlying beneficial effects on keratinocytes are still not fully understood. In this study, we found that RMFE promoted epidermal differentiation and enhanced the barrier function of normal human epidermal keratinocytes (NHEKs) and three-dimensional epidermis model in culture.

View Article and Find Full Text PDF

To investigate the effect of the sizes of osteon-like concentric microgroove structures on the osteoclastic differentiation of macrophages on titanium surfaces, and to provide reference for the surface modification of implants. The silicon wafers sputtered with titanium were selected as the control group (smooth surface specimens) and four concentric groups (concentric circles with the maximum diameter of 200 μ m, the minimum diameter of 20 μ m, the spacing of concentric circles of 10 or 30 μm, the width of microgrooves of 10 or 30 μm, and the depth of microgrooves of 5 or 10 μm) specimens (the total sample size in each group was 27). The width of microgrooves of C10-5 and C10-10 groups was 10 μm, the depth was 5 and 10 μm, and the width of microgrooves of C30-5 and C30-10 groups was 30 μ m, the depth was 5 and 10 μ m, respectively.

View Article and Find Full Text PDF

Objective: The duration of viral shedding and criteria for de-isolation in the hospital among immunocompromised patients with coronavirus disease 2019 (COVID-19) remain unclear. This study aimed to evaluate viral shedding duration in immunocompromised patients infected with the Omicron variant of severe acute respiratory syndrome coronavirus 2.

Methods: A prospective cohort study was performed at 2 tertiary medical centers in Japan during the Omicron epidemic waves from July 2022 to January 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!